

# JEE (ADVANCED) 2019

# PAPER I

# **PHYSICS**

# **SECTION-1 (Maximum Marks : 12)**

| * | This section contains FOUR (04) questions. |
|---|--------------------------------------------|
|---|--------------------------------------------|

- \* Each question has FOUR options ONLY ONE of these four options is the correct answer.
- \* For each question, choose the correct option corresponding to the correct answer.
- \* Answer to each question will be evaluated according to the following marking scheme :
  - FullMarks :+3 If ONLY the correct option is chosen.

Zero Marks :0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks :-1 In all other cases.

1. In a radioactive sample,  ${}^{40}_{19}$ K nuclei either decay into stable  ${}^{40}_{20}$ Ca nuclei with decay constant  $4.5 \times 10^{-10}$  per year or into stable  ${}^{40}_{18}$ Ar nuclei with decay constant  $0.5 \times 10^{-10}$  per year. Given that in this sample all the stable  ${}^{40}_{20}$ Ca and  ${}^{40}_{18}$ Ar nuclei are produced by the  ${}^{40}_{19}$ K nuclei only. In time t  $\times 10^9$  years, if the ratio of the sume of stable  ${}^{40}_{20}$ Ca and  ${}^{40}_{18}$ Ar nuclei to the radioactive  ${}^{40}_{19}$ K nuclei is 99, the value of t will be,

 $[\text{Given}: ln \ 10 = 2.3]$ 

#### **Question ID : 337911112**

एक रेडियोएक्टिव नमूने में,  ${}^{40}_{19}$ K नाभिकों का क्षय  ${}^{40}_{20}$ Ca अथवा  ${}^{40}_{18}$ Ar स्थिर नाभिकों में होता है, जिनके क्षय नियतांक (decay constant) क्रमशः  $4.5 \times 10^{-10}$  प्रति वर्ष (peryear) तथा  $0.5 \times 10^{-10}$  प्रति वर्ष है। दिया है कि इस नमूने में सभी  ${}^{40}_{20}$ Ca और  ${}^{40}_{18}$ Ar नाभिक केवल  ${}^{40}_{19}$ K नाभिकों से बनते हैं। यदि t × 10<sup>9</sup> वर्षो में, स्थिर नाभिकों  ${}^{40}_{20}$ Ca और  ${}^{40}_{18}$ Ar की संख्या के कुल योग एवं रेडियोएक्टिव नाभिकों  ${}^{40}_{19}$ K की संख्या का अनुपात 99 है तो t का मान होगा, [दिया है: ln 10 = 2.3]

(1) 1.15 (2) 2.3 (3) 9.2 (4) 4.6

### Ans. 3

2. A current carrying wireheats a metal rod. The wire provides a constant power(P) to the rod. The metal rod is enclosed in an insulated container. It is observed that the temperature(T) in the metal rod changes with time(t) as

$$T(t) = T_0(1+\beta t^{\frac{1}{4}}),$$

where β is a constant with appropriate dimension while T<sub>0</sub> is a constant with dimension of temperature. The heat capacity of the metal is , एक धारा वाहक तार एक धातु की छड़ को गरम करता है। तार छड़ को एक स्थिर शक्ति(P) (constant power) प्रदान करता है। यह धातु छड़ एक अचालक बर्तन में रखी गयी है। यह पाया गया कि धातु का तापमान (T) समय(t) के साथ निम्न ढंग से परिवर्तित होता है



 $T(t) = T_0(1+\beta t^{\frac{1}{4}}),$ 

जहाँ  $\beta$  एक उपयुक्त विमा का स्थिरांक है जबकि  $T_0$  तापमान का है। धातु की ऊष्मा धारिता है,

$$(1) \ \frac{4P(T(t) - T_0)^4}{\beta^4 T_0^5} \quad (2) \ \frac{4P(T(t) - T_0)^3}{\beta^4 T_0^4} \quad (3) \ \frac{4P(T(t) - T_0)}{\beta^4 T_0^2} \quad (4) \ \frac{4P(T(t) - T_0)^2}{\beta^4 T_0^3}$$

# Ans. 2

3. Consider a spherical gaseous cloud of mass density  $\rho(r)$  in free space where r is the radial distance from its center. The gaseous cloud is made of particles of equal mass m moving in circular orbits about the common center with the same kinetic energy K. The force acting on the particles is their mutual gravitational force. If  $\rho(r)$  is constant in time, the particle number density  $n(r) = \rho(r)/mis$ :

[G is universal gravitational constant]

#### Question ID: 337911109

मान लीजिये मुक्त आकाश (free space) में एक गोलाकार गैस के बादल का द्रव्यमान घनत्व ρ(r) है तथा इसकी केन्द्र से त्रिज्य (radial) दूरी r है। यह गैसीय बादल m द्रव्यमान के समान कणों से बना है जो कि एक समकेन्द्रीय वृत्ताकार कक्षाओं में समान गतिज ऊर्जा K से घूम रहे हैं। इन कणों पर पारस्परिक गुरूत्वाकर्षण बल लग रहा है। यदि ρ(r) समय के साथ एक स्थिर राशि है, तब कणों का संख्या घनत्व n(r) = ρ(r)/m का मान होगा :

[G सार्वत्रिक गुरूत्वीय नियतांक है।]

(1) 
$$\frac{K}{\pi r^2 m^2 G}$$
 (2)  $\frac{K}{2\pi r^2 m^2 G}$  (3)  $\frac{K}{6\pi r^2 m^2 G}$  (4)  $\frac{3K}{\pi r^2 m^2 G}$ 

### Ans. 2

4. A thin spherical insulating sheel of radius R caries a uniformly distributed charge such that the potential at its surface is  $V_0$ . A hole with a small area  $\alpha 4\pi R^2$  ( $\alpha <<1$ ) is made on the shell without affecting the rest of the shell. Which one of the following statement(s) is correct? Question ID : 337911110 (1) The magnitude of electric field at a point, located on a line passing through the hole and shell's centre, on a distance 2R from the center of the spherical shell will be reduced by  $\frac{\alpha V_0}{2R}$ 

(2) The ratio of the potential at the center of the shell to that of the point at  $\frac{1}{2}$  R from center towards the hole

will be 
$$\frac{1-\alpha}{1-2\alpha}$$

(3) The potential at the center of the shell is reduced by  $2\alpha V_0$ 

(4) The magnitude of electric field at the center of the shell is reduced by  $\frac{\alpha V_0}{2R}$ 

#### **Matrix** JEE-(Advanced) Online paper 2019

R त्रिज्या के एक पतले गोलीय अचालक कोश (spherical insulating shell) पर आवेश एकसमान रूप से इस तरह से वितरित है कि इसकी सतह पर विभव  $V_0$  है। इसमें एक छोटे क्षेत्रफल  $\alpha 4\pi R^2$  ( $\alpha <<1$ ) वाला एक छिद्र बाकी कोश को प्रभावित किए बिना बनाया जाता है। निम्नलिखित कथनों में से कौन सा सही है ?

(1) कोश के केन्द्र व छिद्र से गुजरने वाली रेखा पर केन्द्र से 2R की दूरी पर उपस्थित बिन्दु पर वैद्युत क्षेत्र का परिमाण  $\frac{\alpha V_0}{2R}$  से घट जाएगा।

- (2) कोश के केन्द्र तथा केन्द्र से  $\frac{1}{2}$  R दूरी पर छिद्र की ओर उपस्थित बिन्दु पर विभवों का अनुपात  $\frac{1-\alpha}{1-2\alpha}$  होगा।
- (3) कोश के केन्द्र पर विभव का मान  $2\alpha V_0$  से घटता है।
- (4) कोश के केन्द्र पर वैद्युत क्षेत्र (electric field) का परिमाण  $\frac{\alpha V_0}{2R}$  से घटता है।

### Ans. 2

# SECTION-2 (Maximum Marks : 32)

This section contains **Eight(08)** questions.

Each question has **FOUR** options for correct answer(s). **ONE ORMORE THAN ONE** of these four option(s) is (are) correct option(s).

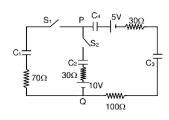
For each question, choose the correct option(s) to answer the question.

Answer to each question will be evaluated according to the following marking scheme:

FullMarks :+4 If only (all) the correct option(s) is (are) chosen.

Partial Marks :+3 If all the four options are correct but ONLY three options are chosen.

Partial Marks :+2 If three ormore options are correct but ONLY two options are chosen, both of which are correct options.


Partial Marks :+1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks :0 If none of the options is chosen (i.e. the question is unanswered).

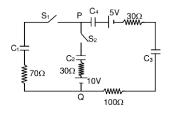
Negative Marks :-1 In all other cases.

1. In the circuit shown, initially there is no charge on capacitors and keys  $S_1$  and  $S_2$  are open. The values of the capacitors are  $C_1 = 10\mu$ F,  $C_2 = 30\mu$ F, and  $C_3 = C_4 = 80\mu$ F. Which statements is/are correct :





Which of the statement(s) is/are correct?


### Question ID: 337911115

(1) The key  $S_1$  is kept closed for long time such that capacitors are fully charged, the voltage across the capacitor  $C_1$  will be 4 V.

(2) The key  $S_1$  is kept closed for long time such that capacitors are fully charged. Now key  $S_2$  is closed, at this time the instantaneous current across  $30\Omega$  resistor (between points P & Q) will be 0.2A (round off to 1<sup>st</sup> decimal place).

(3) The key  $S_1$  is kept closed for long time such that capacitors are fully charged, the voltage difference between points P and Q will be 10 V

(4)At time t = 0, the key S<sub>1</sub> is closed, the instantaneous current in the closed circuit will be 25 mA प्रदर्शित परिपथ में, आरम्भ में संधारित्रों पर कोई आवेश नहीं है और कुंजी S<sub>1</sub> और S<sub>2</sub> खुली हैं। संधारित्रों के मान C<sub>1</sub> = 10 $\mu$ F, C<sub>2</sub> = 30 $\mu$ F और C<sub>3</sub> = C<sub>4</sub> = 80 $\mu$ F है। निम्नलिखित कथनों में से कौन सा(से) सही है(हैं)?



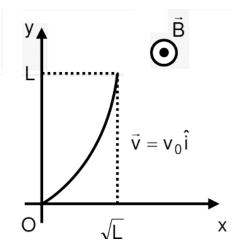
(1) कुंजी  $S_1$  को लम्बे समय के लिए इस प्रकार बंद किया जाए कि सभी संधारित्र पूर्ण आवेशित हो जाए तब संधारित्र  $C_1$  पर 4 V का विभव होगा।

(2) कुंजी  $S_1$  को लम्बे समय के लिए इस प्रकार बंद रखा जाता है कि सभी संधारित्र पूर्ण आवेशित हो जाते हैं। अब कुंजी  $S_2$ को बंद किया जाता है तब इस समय पर 30 $\Omega$  के प्रतिरोध (P और Q के मध्य) में तात्क्षणिक (instantaneous) धारा का मान 0.2A होगा। (दशमलव के प्रथम स्थान तक राउंड ऑफ (round off))

(3) यदि कुंजी  $S_1^{}$  को लम्बे समय के लिए इस प्रकार बंद किया जाए कि सभी संधारित्र पूर्ण आवेशित हो जाए तब बिन्दु Pऔर Q के मध्य 10 V का विभवान्तर होगा।

(4) समय t = 0 पर, जब कुंजी  $S_1$  को बंद किया जाता है, तब बंद परिपथ में तात्क्षणिक (instantaneous)धारा का मान 25 mA होगा।

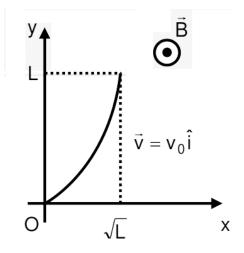
### Ans. 1,4


# MATRIX IEE Academy

2. A conducting wire of parabolic shape, initially  $y = x^2$ , is moving with velocity  $\vec{V} = V_0 \hat{i}$  in a non-uniform mag-

netic field  $\vec{B} = B_0 \left( 1 + \left(\frac{y}{L}\right)^{\beta} \right) \hat{k}$ , as shown in figure. If  $V_0, B_0, L$  and  $\beta$  are positive constants and  $\Delta \phi$  is the

potential difference developed between the ends of the wire, then the correct statements(s) is/are :


#### Question ID: 337911114



- (1)  $|\Delta \phi|$  is proportional to the length of the wire projected on the y-axis
- (2)  $|\Delta \phi|$  remains the same if the parabolic wire is replaced by a straight wire, y = x initially, of length  $\sqrt{2L}$
- (3)  $|\Delta \phi| = \frac{1}{2} B_0 V_0 L$  for  $\beta = 0$ (4)  $|\Delta \phi| = \frac{4}{3} B_0 V_0 L$  for  $\beta = 2$

चित्रानुसार एक असमान चुंबकीय क्षेत्र  $\vec{B} = B_0 \left( 1 + \left( \frac{y}{L} \right)^{\beta} \right) \hat{k}$  में एक परवलयाकार (parabolic shape), आरंभ में  $y = x^2$ वाला, विद्युत चालक तार वेग  $\vec{V} = V_0 \hat{i}$  से चल रहा है। यदि  $V_0, B_0, L$  तथा  $\beta$  धनात्मक नियतांक हैं एवं तार के सिरों के मध्य उत्पन्न विभवान्तर  $\Delta \phi$ है, तब निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) :

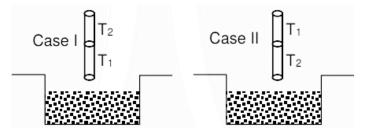




(1) |∆¢| का मान y-अक्ष पर तार की प्रेक्षेपित लम्बाई के समानुपाती होगा।

(2) यदि इस परवलयाकार तार के स्थान पर  $\sqrt{2L}$  लम्बाई वाला एक सीधे तार, आरम्भ में y = x, का उपयोग किया जाये तब  $|\Delta \phi|$  समान रहेगा।

(3) 
$$\beta = 0$$
 के लिए,  $|\Delta \phi| = \frac{1}{2} B_0 V_0 L$   
(4)  $\beta = 2$  के लिए,  $|\Delta \phi| = \frac{4}{3} B_0 V_0 L$ 


Matrix

IEE Academy

# Ans. 1,2,4

3. A cylindrical capillary tube of 0.2 mmradius is made by joining two capillaries  $T_1$  and  $T_2$  of different materials having water contact angles of 0° and 60° respectively. The capillary tube is dipped vertically in water in two different configurations, case I and II as shown infigure. Which of the following option(s) is (are) correct? [Surfacetension of water= 0.075N/m, density of water= 1000 kg/m<sup>3</sup>, take g= 10 m/s<sup>2</sup>]

# Question ID : 337911113

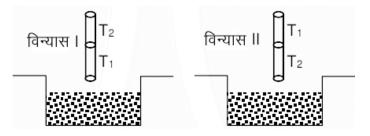


(1) The correction in the height of water column raised in the tube, due to weight of water contained in the meniscus, will be different for both cases.

(2) For case I, if the joint is kept at 8 cm above the water surface, the height of water column in the tube will be

7.5 cm. (Neglect the weight of the water in the meniscus)

(3) For case II, if the capillary joint is 5 cm above the water surface, the height of water column raised in the


# **Matrix** JEE-(Advanced) Online paper 2019

tube will be 3.75 cm. (Neglect the weight of the water in the meniscus)

(4) For case I, if capillary joint is 5cm above the water surface, the height of water column raised in the tube will be more than 8.75 cm (Neglect the weight of the water in the meniscus)

दो भिन्न पदार्थो की एक समान 0.2mm त्रिज्या वाली दो केशनलियों T<sub>1</sub> तथा T<sub>2</sub>, जिनके पानी के साथ संपर्क कोण (contact angle) क्रमशः 0° तथा 60° हैं, को जोड़कर एक केशनली बनाते हैं। इस केशनली को चित्रानुसार दो भिन्न विन्यास -I और विन्यास-II में पानी में ऊर्ध्वाधर डुबाया जाता है। निम्नलिखित कथनों में से कौन सा(से) सही है(हैं)?

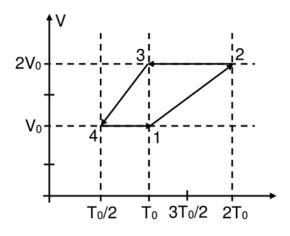
[पानी का पृष्ठतनाव (surface tension) = 0.075 N/m, पानी का घनत्व =  $1000 \text{ kg/m}^3$  तथा g =  $10 \text{ m/s}^2$ ]



(1) पानी के मुक्त पृष्ठ (meniscus) में उपस्थित पानी के भार के कारण केशनली में चढ़े पानी की ऊँचाई में संशोधन (correction) का मान दोनों विन्यासों के लिये भिन्न होगा।

(2) विन्यास-I के लिये, यदि केशनलियों का जोड़ पानी की सतह से 8 cm ऊँचाई पर है, नली में चढ़े पानी की ऊँचाई 7.5 cm होगी। (मुक्त पृष्ठ पर पानी का भार उपेक्षणीय है)

(3) विन्यास-II के लिये, यदि केशनलियों का जोड़ पानी की सतह से 5 cm ऊँचाई पर है, नली में चढ़े पानी की ऊँचाई 3.75 cm होगी। (मुक्त पृष्ठ पर पानी का भार उपेक्षणीय है)


(4) विन्यास-I के लिये, यदि केशनलियों का जोड़ पानी की सतह से 5cmऊपर है, नली में चढ़े पानी की ऊँचाई 8.75 cm से अधिक होगी। (मुक्त पृष्ठ पर पानी का भार उपेक्षणीय है)

# Ans. 2,3

4. One mole of a monatomic ideal gas goes through a thermodynamic cycle, as shown in the volume versus temperature (V-T) diagram. The correct statement(s) is/are :[R is the gas constant]

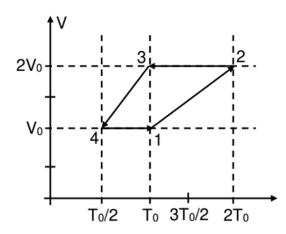
# **Question ID : 337911117**





(1) Work done in this thermodynamic cycle  $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1)$  is  $|W| = \frac{1}{2}RT_0$ 

(2) The ratio of heat transfer during processes  $1 \rightarrow 2$  and  $3 \rightarrow 4$  is  $\left| \frac{Q_{1 \rightarrow 2}}{Q_{3 \rightarrow 4}} \right| = \frac{1}{2}$ 


Matrix

**IEEAcademv** 

(3) The ratio of heat transfer during processes  $1 \rightarrow 2$  and  $2 \rightarrow 3$  is  $\left| \frac{Q_{1 \rightarrow 2}}{Q_{2 \rightarrow 3}} \right| = \frac{5}{3}$ 

(4) The above thermodynamic cycle exhibits only isochoric and adiabatic processes.

एकपरमाणुक आदर्श गैस का एक मोल एक ऊष्मागतिकीय चक्र (thermodynamic cycle) से गुजरता है, जिसे आयतन–तापमान (V-T) ग्राफ चित्र में दिखाया गया है। निम्नलिखित कथनों में से कौन सा(से) सही है(हैं) : [R गैस नियतांक है)



(1) इस ऊष्मागतिकीय चक्र  $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1)$  में किया गया कार्य  $|W| = \frac{1}{2}RT_0$  है।

(2) चक्रम 1 
$$\rightarrow$$
 2 तथा 3  $\rightarrow$  4 में ऊष्मा स्थानात्तरण का अनुपात  $\left| \begin{array}{c} Q_{1 \rightarrow 2} \\ Q_{3 \rightarrow 4} \end{array} \right| = \frac{1}{2} \frac{1}{8}$   
(3) चक्रम 1  $\rightarrow$  2 तथा 2  $\rightarrow$  3 में ऊष्मा स्थानात्तरण का अनुपात  $\left| \begin{array}{c} Q_{1 \rightarrow 2} \\ Q_{2 \rightarrow 3} \end{array} \right| = \frac{5}{3} \frac{1}{8}$ 

Matrix

IEE A cademy

(4) उपर्युक्त ऊष्मागतिकीय चक्र में केवल समायतनीय (isochoric) और रुद्धोष्म (adiabatic) प्रक्रम आते हैं।

# Ans. 1,3

- Let us considerasy stemof units in which mass and angular momentum are dimensionless. If length has dimension of L, which of the following in statement(s) is/are correct?
   Question ID : 337911119
  - (1) The dimension of force is  $L^{-3}$  (2) The dimension of linear momentum is  $L^{-1}$
  - (3) The dimension of energy is  $L^{-2}$  (4) The dimension of power is  $L^{-5}$
  - मान लीजिये कि एक इकाई प्रणाली में द्रव्यमान तथा कोणीय संवेग विमा-रहित (dimensionless) है। यदि लम्बाई की विमा L हो, तब निम्नलिखित कथनों में से कौन सा(से) सही है(हैं)?
  - (1) बल की विमा (dimension)  $L^{-3}$  है। (2) रेखीय संवेग की विमा (dimension)  $L^{-1}$  है।
  - (3) ऊर्जा की विमा (dimension) L<sup>-2</sup> है। (4
- (4) शक्ति की विमा (dimension) $\mathrm{L}^{-5}$ है।

# Ans. 1,2,3

- 6. A charged shell of radius R carries a total charge Q. Given  $\phi$  as the flux of electric field through a closed cylindrical surface of height h, radius r and with its center same as that of the shell. Here center of the cylinder is a point on the axis of the cylinder which is equidistant from its top and bottom surfaces. Which of the followingoption(s) is/are correct [ $\in_0$  is the permittivity of freesp ace] Question ID : 337911116
  - (1) If h > 2R and r > R then  $\phi = Q/\epsilon_0$  (2) If h > 2R and r = 3R/5 then  $\phi = Q/5\epsilon_0$
  - (3) If h < 8R/5 and r = 3R/5 then  $\phi = 0$  (4) If h > 2R and r = 4R/5 then  $\phi = Q/5 \in Q/5 \in Q/5$

एक R त्रिज्या वाले आवेशित कोश पर कुल आवेश Q है। एक लम्बाई h और त्रिज्या r वाले बेलनाकार बंद पृष्ठ, जिसका केन्द्र कोश के केन्द्र पर ही है, से गुजरने वाला वैद्युत फ्लक्स (flux) ф है। यहाँ बेलन का केन्द्र इसके अक्ष पर एक बिन्दु है जो कि ऊपरी और निचली सतह से समान दूरी पर है। निम्नलिखित कथनों में से कौन सा(से) सही है(हैं)?

[मुक्त आकाश (free space) की वैद्युतशीलता ∈ है |]

(1) यदि 
$$h > 2R$$
 और  $r > R$  तब  $\phi = Q/\epsilon_0$  (2) यदि  $h > 2R$  और  $r = 3R/5$  तब  $\phi = Q/5\epsilon_0$ 

(3) यदि 
$$h < 8R/5$$
 और  $r = 3R/5$  तब  $\phi = 0$  (4) यदि  $h > 2R$  और  $r = 4R/5$  तब  $\phi = Q/5 \in_0^{-1}$ 

# Ans. 1,2,3

7. Two identical moving coil galvanometers have  $10 \Omega$  resistance and full scale deflection at  $2\mu$ A current. One of them is converted into a voltmeter of 100 mV fullscale reading and the other into an Ammeter of 1mA fullscale current using appropriate resistors. These are then used to measure the voltage and current in the Ohm's law experiment with R = 1000 \Omega resistor by using an ideal cell. Which of the following statement(s) is/are correct?



# Question ID: 337911120

(1) If the ideal cell is replaced by a cell having internal resistance of  $5\Omega$  then the measured value of R will be more than  $1000 \Omega$ 

(2) The measured value of R will be  $978\Omega < R < 982 \Omega$ 

(3) The resistance of the Voltmeter will be 100 k  $\!\Omega$ 

(4) The resistance of the Ammeter will be  $0.02 \Omega$  (round off to  $2^{nd}$  decimal place)

दो एकसमान चलकुंडली धारामापी (galvanometer) जिनके प्रतिरोध 10Ω हैं तथा इनमें 2µA पर पूर्णस्केल विक्षेप (full-scale deflection) मिलता है। इनमें से एक को 100mV पूर्णस्केल मापन योग्य वोल्टमीटर तथा दूसरे को 1mA पूर्णस्केल मापन योग्य अमीटर में उपयुक्त प्रतिरोधों का प्रयोग करते हुए परिवर्तित करते हैं। ओम का नियम (Ohm's law) प्रयोग में R = 1000Ω प्रतिरोध एवं एक आदर्श सेल के साथ इन दोनों का उपयोग विभव और धारा को मापने के लिये किया जाता है। निम्नलिखित कथनों में से कौन सा(से) सही है (हैं)?

(1) यदि आदर्श सेल को दूसरे सेल जिसका आंतरिक प्रतिरोध  $5\Omega$  से बदला जाये तब प्रतिरोध R का मापा गया मान 1000  $\Omega$  से अधिक होगा।

(2) R का मापा गया मान  $978\Omega < R < 982 \Omega$  होगा।

(3) वोल्टमीटर के प्रतिरोध का मान  $100~{
m k}\Omega$  होगा।

(4) अमीटर के प्रतिरोध का मान 0.02 Ω होगा। (दशमलव के द्वितीय स्थान तक राउंड आफ (round off))

# Ans. 2,4

8. A thin convex lens is made of two materials with refractive indices  $n_1$  and  $n_2$ , as shown in figure. The radius of curvature of the left and right spherical surfaces are equal. f is the focal length of the lens when  $n_1 = n_2 = n$ . The focal length is  $f + \Delta f$  when  $n_1 = n$  and  $n_2 = n + \Delta n$ . Assuming  $\Delta n \ll (n - 1)$  and  $1 \le n \le 2$ , the correct statement(s) is/are, Question ID : 337911118



(1) For n = 1.5,  $\Delta n = 10^{-3}$  and f = 20 cm, the value of  $|\Delta f|$  will be 0.02 cm (round off to 2<sup>nd</sup> decimal place) (2) The relation between  $\frac{\Delta f}{f}$  and  $\frac{\Delta n}{n}$  remains unchanged if both the convex surfaces are replaced by concave



# **Matrix** JEE-(Advanced) Online paper 2019

#### **PAPER-I**

surfaces of the same radius of curvature.

(3) 
$$\left| \frac{\Delta f}{f} \right| < \left| \frac{\Delta n}{n} \right|$$
  
(4) If  $\frac{\Delta n}{n} < 0$  then  $\frac{\Delta f}{f} > 0$ 

चित्र में दर्शाया गया एक पतला उत्तल लेंस दो पदार्थो से मिलकर बना है, जिनके अपवर्तनांक (refractive index) क्रमशः  $n_1$ और  $n_2$  हैं। लेंस के बाएँ और दाएँ पृष्ठों की वक्रता त्रिज्याएँ समान हैं।  $n_1 = n_2 = n$  के लिए लेंस की फोकस दूरी f है। जब  $n_1 = n$  और  $n_2 = n + \Delta n$  है, तब फोकस दूरी  $f + \Delta f$  है। यह मानते हुए कि  $\Delta n << (n-1)$  और 1 < n < 2, निम्नलिखित कथनों में से कौन सा(से) सही है (हैं),



(1) यदि n = 1.5,  $\Delta n = 10^{-3}$  और f = 20 cm हो, तब  $|\Delta f|$  का मान 0.02 cm होगा। (दशमलव के द्वितीय स्थान तक राउंड ऑफ (round off))

(2) यदि दोनों उत्तल पृष्ठों को उसी समान वक्रता त्रिज्या वाले अवतल पृष्ठों से बदला जाता है तब  $\frac{\Delta f}{f}$  और  $\frac{\Delta n}{n}$  का संबंध ा अपरिवर्तित रहता है।

(3) 
$$\left| \frac{\Delta f}{f} \right| < \left| \frac{\Delta n}{n} \right|$$
  
(4) यदि  $\frac{\Delta n}{n} < 0$  हो तब  $\frac{\Delta f}{f} > 0$ 

#### Ans. 1,2,4

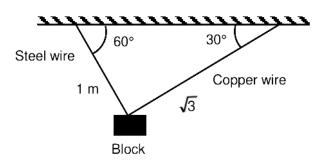
### SECTION-3: (Maximum Marks: 18)

- \* This section contains SIX (06) questions. The answer to each question is a NUMERICALVALUE.
- \* For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keyp adin the placed esignated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- \* Answer to each question will be evaluated according to the following marking scheme:

| <b>MATRIX JEE Academy JEE-(Advanced)</b> Online paper 2019    | PAPER-I |
|---------------------------------------------------------------|---------|
| FullMarks : +3 IfONLY the correct numerical value is entered. |         |
| Zero Marks : 0 In all other cases.                            |         |

1. A block of weight 100 N is suspended by copper and steel wires of same cross sectional area  $0.5 \text{ cm}^2$  and, length  $\sqrt{3}$  m and 1 m, respectively. Their other ends are fixed on a ceiling as shown in figure. The angles subtended by copperand steel wires with ceiling are 30° and 60°, respectively. If elongation in copper wire is

 $(\Delta l_{\rm c})$  and elongation in steel wire is  $(\Delta l_{\rm s})$ , then the ratio  $\frac{\Delta l_{\rm c}}{\Delta l_{\rm s}}$  is \_\_\_\_\_.


(Young's modulus for copper and steel are  $1 \times 10^{11}$  N/m<sup>2</sup> and  $2 \times 10^{11}$  N/m<sup>2</sup>, respectively)

# **Question ID : 337911122**

एक 100 N भार वाले गुटके को तांबे और स्टील के तारों, जिनका अनुप्रस्थ काट क्षेत्रफल (cross sectional area) एकसमान तथा  $0.5 \text{ cm}^2$  रहै और लम्बाई क्रमशः  $\sqrt{3} \text{ m}$  तथा 1 m है, द्वारा लटकाया जाता है। तारों के दूसरे छोर छत पर चित्रानुसार जुड़े हुए हैं। तांबे और स्टील के तार क्रमशः छत से 30° और 60° का कोण बनाते है। यदि तांबे के तार में लंबाई वृद्धि ( $\Delta l_{2}$ )

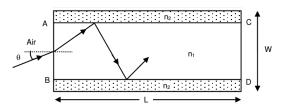
तथा स्टील के तार में लंबाई वृद्धि  $(\Delta l_s)$  है तब  $\frac{\Delta l_c}{\Delta l_s} =$  है।

(तांबे और स्टील का यंग गुणांक क्रमशः  $1 \times 10^{11} \text{ N/m}^2$  तथा  $2 \times 10^{11} \text{ N/m}^2$  है।)



### Ans. 2.00

2. A planar structure of length L and width W is made of two different optical media of refractive indices  $n_1 = 1.5$ and  $n_2 = 1.44$  as shown in figure. If L>> W, aray entering from end AB will emerge from end CD only if the total internal reflection condition is met inside the structure. For L = 9.6 m, if the incident angle  $\theta$  is varied, the maximum time taken by a ray to exit the plane CD is t × 10<sup>-9</sup> s, where t is

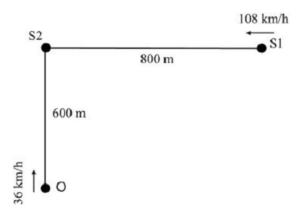

[Speed of light  $c = 3 \times 10^8 \text{ m/s}$ ]Question ID : 337911126एक L लंबाई तथा W चौड़ाई की एक समतल संरचना दो भिन्न प्रकाशीय पदार्थो से बनी है, जिनका अपवर्तनांक  $n_1 = 1.5$  और $n_2 = 1.44$  है, जैसा चित्र में प्रदर्शित है | यदि L>> W है तब AB सिरे पर आपतित किरण का CD सिरे से उदगमन (emerge)संरचना के अंदर पूर्ण आंतरिक परावर्तन (total internal reflection) होने पर ही होगा | L = 9.6 m के लिए, यदि आपतन कोण



heta को बदलते हैं तब किरण द्वारा CD सिरे से बाहर निकलने में लिया गया अधिकतम समय t  $imes 10^{-9}\,
m s$  है, जहाँ t का मान

है ।

[प्रकाश कि गति, c = 3 × 10<sup>8</sup> m/s]




### Ans. 50.00

3. A train S1, moving with a uniform velocity of 108 km/h, approaches another train S2 standing on a platform. An observer O moves with a uniform velocity of 36 km/h towards S2, as shown in figure. Both the trains are blowing whist les of same frequency 120 Hz. When O is 600 m away from S2 and distance between S1 and S2 is 800 m, then umber of beats heard by O is \_\_\_\_\_. (Speed of the sound = 330 m/s)

#### Question ID: 337911123

एक रेलगाड़ी (S1) 108 km/h के समान वेग से चलते हुए दूसरी रेलगाड़ी (S2) जो कि स्टेशन पर खड़ी है, की तरफ जा रही है। एक श्रोता (O) 36 km/h के समान वेग से S2 की तरफ चित्रानुसार जा रहा है। दोनों रेलगाड़ियाँ 120 Hz के समान आवृत्ति की सीटियाँ बजा रही हैं। जब O की दूरी S2 से 600 m है तथा S1 और S2 के बीच की दूरी 800 m है तब O के द्वारा सुने गए विस्पंदनों की संख्या \_\_\_\_\_ है।(ध्वनि की गति = 330 m/s)



#### Ans. 8.13

4. A parallel plate capacitor of capacitance C has spacing d between two plates having area A. The region between the plates is filled with N dielectric layers, parallel to its plates, each with thickness  $\delta = \frac{d}{N}$ . The dielectric constant of the m<sup>th</sup> layer is  $K_m = K\left(1 + \frac{m}{N}\right)$ . For a very large N(> 10<sup>3</sup>), the capacitance C is

 $\alpha \left( \frac{K \in_0 A}{dl n 2} \right)$ . The value of  $\alpha$  will be:

 $[\in_0$  is the permittivity of free space]

Matrix

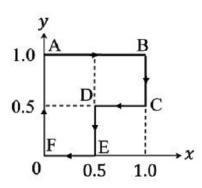
**IEE Academy** 

# Question ID: 337911124

एक C धारिता वाले समान्तर प्लेट संधारित्र के प्लेटों के बीच की दूरी d है और प्रत्येक प्लेट का क्षेत्रफल A है। प्लेटों के बीच, पूरे स्थान को प्लेटों के समान्तर,  $\delta = \frac{d}{N}$  मोटाई वाली N परावैद्युत परतों से भर देते है। m<sup>th</sup> पर का परावैद्युतांक  $K_m = K \left( 1 + \frac{m}{N} \right)$  है। बहुत अधिक N(> 10<sup>3</sup>) के लिए धारिता  $C = \alpha \left( \frac{K \in_0 A}{dl n 2} \right)$  है।  $\alpha$  का मान ———होगा। [मुक्त आकाश की वैद्युतशीलता  $\in_0$  है]

### Ans. 1.00

5. A liquid at 30° C is poured very slowly into a Calorimeter that is at temperature of 110°C. The boilingtemperature of the liquid is 80°C. It is found that the first 5 gm of the liquid completely evaporates. After pouring another 80 gm of the liquid the equilibrium temperature is found to be 50°C. The ratio of the Latent heat of the liquid to its specificheat will be \_\_\_\_\_ °C. (Neglect the heat exchange with surrounding]


#### Question ID: 337911125

एक 30° C के द्रव को एक ऊष्मामापी (Cabrimeter), जिसका तापमान 110°C, में धीरे–धीरे डाला जाता है। द्रव का क्वथनांक (boilingtemperature) 80°C है। ऐसा पाया गया कि द्रव का पहला 5 gm पूर्ण रूप से वाष्पित हो जाता है। इसके बाद द्रव की 80 gm और मात्रा डालने पर साम्यावस्था का तापमान 50°C हो जाता है। द्रव की गुप्त (latent) और विशिष्ट ऊष्माओं का अनुपात \_\_\_\_\_°C होगा। (वातावरण के साथ ऊष्मा स्थानान्तरण को उपेक्षणीय माने]

# Ans. 270.00

6.A particle is moved along a path AB-BC-CD-DE-EF-FA, as shown in figure, in presence of a force<br/> $\vec{F} = (\alpha \ y\hat{i} + 2\alpha \ x\hat{j}) N$ , where x and y are in meter and  $\alpha = -1 \ Nm^{-1}$ . The work done on the particle by this<br/>force  $\vec{F}$  will be \_\_\_\_\_\_ Joule.Question ID : 337911121<br/> $\nabla \phi$  are  $\vec{r} = (\alpha \ y\hat{i} + 2\alpha \ x\hat{j}) N$ ,  $\nabla e \vec{r} \ x \exists x \exists x y \phi$  and  $\pi = -1 \ Nm^{-1} \ \hat{e}$ ,  $\theta \exists \nabla e \nabla e \nabla e \nabla e \nabla e \nabla e$ <br/>AB-BC-CD-DE-EF-FA vertex vector  $\vec{r} \ x \exists x \exists x \exists x \exists x \forall x \phi$ <br/>and  $\vec{r} \ \vec{r} \ z \equiv 0$ <br/> $\vec{r} \ z \equiv 0$ <br





Ans. 0.75