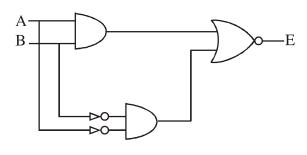
JEE Main April 2024 Question Paper With Text Solution 09 April | Shift-2

PHYSICS



JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

31. In the truth table of the above circuit the value of X and Y are:

(1) 0, 1

(2) 1, 0

(3) 1, 1

(4) 0, 0

Question ID: 68019114651

Ans. Official Answer NTA(3)

Sol.

32. A square loop of side 15 cm being moved towards right at a constant speed of 2 cm/s as shown in figure. The front edge enters the 50 cm wide magnetic field at t = 0. The value of induced emf in the loop at t = 10 s will be:

$$B = 1.0T$$

$$2 \text{ cm/s} \times \times \times \times$$

$$\times \times \times \times$$

$$\times \times \times \times$$

$$\times \times \times \times$$

$$50 \text{ cm}$$

(1) zero

(2)3 mV

 $(3) 4.5 \, \text{mV}$

 $(4) 0.3 \, \text{mV}$

Question ID: 68019114648

Ans. Official Answer NTA(1)

Sol.

33. The temperature of a gas is –78°C and the average translational kinetic energy of its molecules is K. The temperature at which the average translational kinetic energy of the molecules of the same gas becomes 2K is:

 $(1) - 39^{\circ}C$

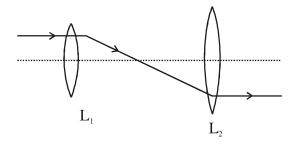
 $(2) 117^{\circ}C$

 $(3) - 78^{\circ}C$

(4) 127°C

Question ID: 68019114644

MATRIX JEE ACADEMY


Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

Ans. Official Answer NTA(2)

Sol.

34. The following figure represents two biconvex lenses L_1 and L_2 having focal length 10 cm and 15 cm respectively. The distance between L_1 and L_2 is:

(1) 25 cm

(2) 15 cm

(3) 10 cm

(4)35 cm

Question ID: 68019114649

Ans. Official Answer NTA(1)

Sol.

35. A spherical ball of radius 1×10^{-4} m and density 10^5 kg/m³ falls freely under gravity through a distance h before entering a tank of water, If after entering in water the velocity of the ball does not change, then the value of h is approximately:

(The coefficient of viscosity of water is $9.8 \times 10^{-6} \, \text{N s/m}^2$)

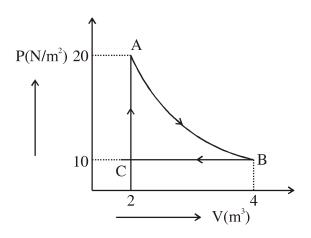
 $(1) 2296 \,\mathrm{m}$

(2) 2396 m

(3) 2249 m

(4) 2518 m

Question ID: 68019114643


Ans. Official Answer NTA (4)

Sol.

36. A real gas within a closed chamber at 27° C undergoes the cyclic process as shwon in figure. The gas obeys $PV^3 = RT$ equation for the path A to B. The net work done in the complete cycle is (assuming R = 8 J/mol K):

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

(1) 205 J

(2) 20 J

(3) 225 J

(4) - 20 J

Question ID: 68019114639

Ans. Official Answer NTA(1)

Matrix Answer (Bouns)

Sol.

A proton and a deutron (q = +e, m = 2.0u) having same kinetic energies enter a region of uniform magnetic 37. field \vec{B} , moving perpendicular to \vec{B} . The ratio of the radius $r_{_d}$ of deutron path to the radius $r_{_p}$ of the proton path is:

(1)1:1

(2)1:2

(3) $\sqrt{2}:1$

 $(4) 1: \sqrt{2}$

Question ID: 68019114647

Official Answer NTA(3) Ans.

Sol.

The de-Broglie wavelength associated with a particle of mass m and energy E is $_h/\sqrt{_{2mE}}$. The dimensional 38. formula for Planck's constant is:

 $(1) \left\lceil ML^2T^{-1} \right\rceil$

(2) $\left\lceil ML^{-1}T^{-2}\right\rceil$ (3) $\left\lceil M^2L^2T^{-2}\right\rceil$ (4) $\left\lceil MLT^{-2}\right\rceil$

Question ID: 68019114634

Ans. Official Answer NTA(1)

Sol.

The magnetic field in a plane electromagnetic wave is $B_y = (3.5 \times 10^{-7}) \sin(1.5 \times 10^3 x + 0.5 \times 10^{11} t) T$. The 39. corresponding electric field will be:

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

$$(1) \ E_z = 105 \sin \left(1.5 \times 10^3 \, x + 0.5 \times 10^{11} \, t\right) V m^{-1} \quad (2) \ E_y = 10.5 \sin \left(1.5 \times 10^3 \, x + 0.5 \times 10^{11} \, t\right) V m^{-1}$$

(3)
$$E_v = 1.17 \sin(1.5 \times 10^3 x + 0.5 \times 10^{11} t) Vm^{-1}$$
 (4) $E_z = 1.17 \sin(1.5 \times 10^3 x + 0.5 \times 10^{11} t) Vm^{-1}$

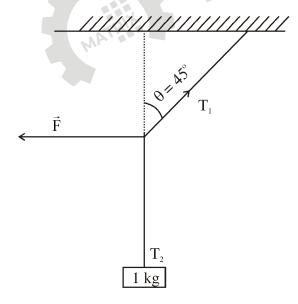
Question ID: 68019114653

Ans. Official Answer NTA(1)

Sol.

- 40. A hydrogen atom in ground state is given an energy of 10.2 eV. How many spectral lines will be emitted due to transition of electrons?
 - (1) 1
- (2)3

- (3) 10
- (4)6


Question ID: 68019114638

Ans. Official Answer NTA(1)

Sol.

41. A 1 kg mass is suspended from the ceiling by a rope of length 4m. A horizontal force 'F is applied at the mid point of the rope so that the rope makes an angle of 45° with respect to the vertical axis as shown in figure. The magnitude of F is:

(Assume that the system is in equilibrium and $g = 10 \text{ m/s}^2$)

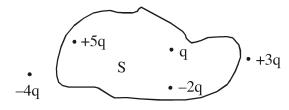
Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

(1) 10 N

(2) $\frac{10}{\sqrt{2}}$ N

(3) 1 N


(4) $\frac{1}{10 \times \sqrt{2}}$ N

Question ID: 68019114637

Ans. Official Answer NTA(1)

Sol.

42. Five changes +q, +5q, -2q, +3q and -4q are situated as shown in the figure. The electric flux due to this configuration through the surface S is:

 $(1) \frac{4q}{\epsilon_0}$

 $(2) \frac{3q}{\epsilon_0}$

 $(3) \frac{q}{\epsilon_0}$

 $(4) \frac{5q}{\epsilon_0}$

Question ID: 68019114645

Ans. Official Answer NTA(1)

43. Two cars are travelling towards each other at speed of 20 ms⁻¹ each. When the cars are 300 m apart, both the drivers apply brakes and the cars retard at the rate of 2 ms⁻². The distance between them when they come to rest is:

 $(1) 25 \,\mathrm{m}$

 $(2) 50 \,\mathrm{m}$

 $(3) 200 \,\mathrm{m}$

(4) 100 m

Question ID: 68019114635

Ans. Official Answer NTA(4)

Sol.

The energy released in the fusion of 2 kg of hydrogen deep in the sun is $E_{\rm H}$ and the energy released in the fission of 2 kg of $^{235}{\rm U}$ is $E_{\rm U}$. The ratio $\frac{E_{\rm H}}{E_{\rm U}}$ is approximately :

(Consider the fusion reaction as $4_1^1H + 2e^- \rightarrow_2^H He + 2v + 6\gamma + 26.7 MeV$, energy released in the fission reaction of ^{235}U is 200 MeV per fission nucleus and $N_A = 6.023 \times 10^{23}$)

(1)25.6

(2) 15.04

(3) 7.62

(4) 9.13

Question ID: 68019114640

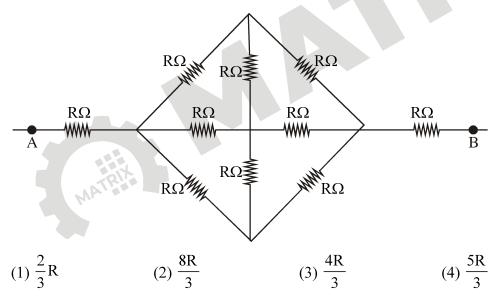
MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

Ans. Official Answer NTA(3)

Sol.


- 45. A nucleus at rest disintegrates into two smaller nuclei with their masses in the ratio of 2:1. After disintegration they will move:
 - (1) in opposite directions with the same speed.
 - (2) in opposite directions with speed in the ratio of 2: 1 respectively.
 - (3) in the same direction with same speed.
 - (4) in opposite directions with speed in the ratio of 1:2 respectively.

Question ID: 68019114636

Ans. Official Answer NTA (4)

Sol.

46. The effective resistance between A and B, if resistance of each resistor is R, will be:

Question ID: 68019114646

Ans. Official Answer NTA(2)

Sol.

47. A satellite of 10^3 kg mass is revolving in circular orbit of radius 2R. If $\frac{10^4 \text{R}}{6}$ J energy is supplied to the satellite, it would revolve in a new circular orbit of radius:

(use $g = 10 \text{ m/s}^2$, R = radius of earth)

- (1)4R
- (2) 3R
- (3) 6R
- (4) 2.5R

MATRIX JEE ACADEMY

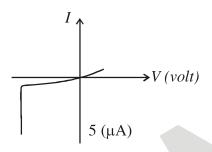
Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

Question ID: 68019114641

Official Answer NTA(3) Ans.

Sol.


- 48. The excess pressure inside a soap bubble is thrice the excess pressure inside a second soap bubble. The ratio between the volume of the first and the second bubble is:
 - (1)1:81
- (2)1:9
- (3)1:3
- (4) 1:27

Question ID: 68019114642

Official Answer NTA (4) Ans.

Sol.

49. The I-V characteristics of an electronic device shown in the figure. The device is:

- (1) a zener diode which can be used as a voltage regulator
- (2) a solar cell
- (3) a diode which can be used as a rectifier
- (4) a transistor which can be used as an amplifier

Question ID: 68019114652

Official Answer NTA(1) Ans.

Sol.

- 50. UV light of 4.13 eV is incident on a photosensitive metal surface having work function 3.13 eV. The maximum kinetic energy of ejected photoelectrons will be:
 - (1) 7.26 eV
- (2) 4.13 eV
- (3) 3.13 eV
- (4) 1 eV

Question ID: 68019114650

Official Answer NTA (4) Ans.

Sol.

A capacitor of reactance $4\sqrt{3}\Omega$ and a resistor of resistance 4Ω are connected in series with an ac source of 51.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Physics)

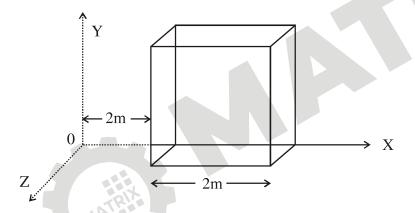
JEE Main April 2024 | 09 April Shift-2

peak value $8\sqrt{2}$ V. The power dissipation in the circuit is W.

Question ID: 68019114656

Ans. Official Answer NTA (4)

Sol.


52. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} and its magnitude is half that of \vec{B} . The angle between vectors \vec{A} and \vec{B} is _______°.

Question ID: 68019114662

Ans. Official Answer NTA (150)

Sol.

53. An electric field $\vec{E} = (2x \,\hat{i}) NC^{-1}$ exists in space. A cube of side 2m is placed in the space as per figure given below. The electric flux through the cube is ______Nm²/C.

Question ID: 68019114659

Ans. Official Answer NTA (16)

Sol.

54. A straight magnetic strip has a magnetic moment of 44 Am². If the strip is bent in a semicircular shape, its magnetic moment will be _____Am².

(given
$$\pi = \frac{22}{7}$$
)

Question ID: 68019114657

Ans. Official Answer NTA (28)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

Ans. Official Answer NTA (58)

Sol.

Monochromatic light of wavelength 500 nm is used in Young's double slit experiment. An interference pattern is obtained on a screen. When one of the slits is covered with a very thin glass plate (refractive index = 1.5), the central maximum is shifted to a position previously occupied by the 4th bright fringe. The thickness of the glass-plate is μ m.

Question ID: 68019114655

Ans. Official Answer NTA (4)

Sol.

A particle of mass 0.50 kg executes simple harmonic motion under force $F = -50 \, (Nm^{-1}) x$. The time period of oscillation is $\frac{x}{35}$ s. The value of x is ______.

(given
$$\pi = \frac{22}{7}$$
)

Question ID: 68019114660

Ans. Official Answer NTA (22)

Sol.

58. A circular disc reaches from top to botton of an inclined plane of length l. When it slips down the plane, if takes t s. When it rolls down the plane then it takes $\left(\frac{\alpha}{2}\right)^{\frac{1}{2}}$ ts, where $\left(\frac{\alpha}{2}\right)^{\frac{1}{2}}$ ts is ______.

Question ID: 68019114661

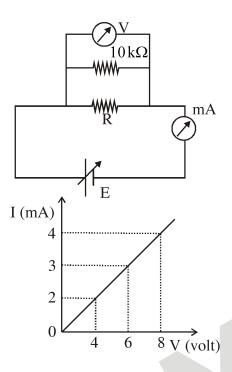
Ans. Official Answer NTA(3)

Sol.

59. At room temperature (27°C), the resistance of a heating element is $50\,\Omega$. The temperature coefficient of the material is 2.4×10^{-4} °C⁻¹. The temperature of the element, when its resistance is $62\,\Omega$, is _____°C.

Question ID: 68019114658

Ans. Official Answer NTA (1027)


Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 09 April Shift-2

To determine the resistance (R) of a wire, a circuit is designed below. The V-I characteristic curve for this circuit is plotted for the voltementer and the ammeter readings as shown in figure. The value of R is $\underline{\hspace{0.2cm}}$ $\underline{\hspace{0.2cm}}$

Question ID: 68019114663

Ans. Official Answer NTA (2500)

Sol.