JEE Main April 2024 Question Paper With Text Solution 08 April | Shift-1

PHYSICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

31. Two planets A and B having masses m₁ and m, move around the sun in circular orbits of r₁ and r₂ radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\left(\frac{T_A}{T_-}\right)$ is:

 $(1)\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^3$

(2) $\frac{1}{27} \left(\frac{m_2}{m_1}\right)^3$ (3) $27 \left(\frac{m_1}{m_2}\right)^3$ (4) $\left(\frac{r_2}{r_1}\right)^{\frac{3}{2}}$

Question ID: 68019114371

Ans. Official Answer NTA (2)

Sol.

Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{l} \frac{dyne}{cm^2}$ where M is the mass and l is the 32. extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from M--l plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and l are 500 g and 2 cm respectively then percentage error of Y is:

(1)0.5%

(2) 0.02%

(3) 0.2%

(4)2%

Question ID: 68019114381

Official Answer NTA(4) Ans.

Sol.

33. Paramagnetic substances:

A. align themselves along the directions of external magnetic field.

B. attract strongly towards external magnetic field.

C. has susceptibility little more than zero.

D. move from a region of strong magnetic field to weak magnetic field.

Choose the most appropriate answer from the options given below:

(1) A,B, C Only

(2) B, D Only

(3) A, C Only

(4) A, B, C, D

Question ID: 68019114374

Official Answer NTA(3) Ans.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

Sol.

34. Two charged conduting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:

 $(1) \frac{a}{b}$

(2) ab

 $(3) \frac{b}{a}$

(4) \sqrt{ab}

Question ID: 68019114378

Ans. Official Answer NTA(1)

Sol.

35. Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm² is the light energy flux during span of 1 hour 30 minutes, Then the area of the surface is:

 $(1) 0.2 \text{ m}^2$

 $(2) 20 \text{ m}^2$

 $(3) 0.1 \text{ m}^2$

 $(4) 0.02 \text{ m}^2$

Question ID: 68019114375

Ans. Official Answer NTA (4)

Sol.

36. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:

(1) 1:2

(2) $1:\sqrt{2}$

(3) 2:1

(4) $\sqrt{2}:1$

Question ID: 68019114376

Ans. Official Answer NTA (4)

Sol.

37. The output Y of following circuit for given inputs is:

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

(1) $\Lambda . B(\Lambda + B)$

(2) A·B

 $(3) \overline{\mathbf{A}} \cdot \mathbf{B}$

(4)0

Question ID: 68019114380

Official Answer NTA(4) Ans.

Sol.

38. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The

relation between the ratio $\frac{V_a}{V_b}$ and the ratio $\frac{V_b}{V}$ is:

$$(1) \frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{\frac{1}{2}}$$

$$(2) \quad \frac{V_a}{V_d} \neq \frac{V_b}{V_c}$$

$$(3) \frac{V_a}{V_d} = \frac{V_b}{V_c}$$

(3)
$$\frac{V_a}{V_d} = \frac{V_b}{V_c}$$
 (4) $\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^2$

Question ID: 68019114370

Official Answer NTA(3) Ans.

Sol.

39. Correct Bernoulli's equation is (symbols have their usual meaning):

(1)
$$P + \rho gh + \frac{1}{2}\rho v^2 = constant$$

(2)
$$P + \frac{1}{2}\rho gh + \frac{1}{2}\rho v^2 = constant$$

(3)
$$P + \rho gh + \rho v^2 = constant$$

(4)
$$P + mgh + \frac{1}{2}mv^2 = constant$$

Question ID: 68019114369

Official Answer NTA(1) Ans.

Sol.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

_	<u> </u>		JEE Main April 20	24 06 April Silitt-1	
40.	The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10				
	divisions of vernier scale. The shortest division on the main scale is equal to 1mm. The main scale reading is 2				
	cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635				
	g, the density of the sphere is:				
	(1) 1.7 g/cm^3	$(2) 2.2 \text{ g/cm}^3$	$(3) 2.5 \text{ g/cm}^3$	$(4) 2.0 \text{ g/cm}^3$	
Quest	ion ID: 68019114382				
Ans.	Official Answer NTA	x(4)			
Sol.					
41.	A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature				
	(27°C). The ratio of specific heat of gases at constant volume respectively is:				
	(1) $\frac{7}{5}$	(2) $\frac{3}{5}$	$(3)\frac{5}{3}$	$(4) \frac{3}{2}$	
Quest	ion ID: 68019114372				
Ans.	Official Answer NTA	x(2)			
Sol.					
42.	Aplayer caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed				
	in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:				
	(1) 3N	(2) 30 N	(3) 150 N	(4) 300 N	
Quest	ion ID: 68019114367				
Ans.	Official Answer NTA	x(2)			
Sol.					
43.	ALCR circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is				
	halved keeping all other parameters same. The current amplitude at resonance will be now:				
	(1) double	(2) halved	(3) Zero	(4) same	
Quest	ion ID: 68019114383				
Ans.	Official Answer NTA	(1)			
Sol.					
44.	A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively.				

MATRIX JEE ACADEMY

The ratio of their kinetic energies $(K_B: K_A)$ is:

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

(1)1:1

 $(2) v_{\scriptscriptstyle B} : v_{\scriptscriptstyle A}$

 $(3) \,\mathrm{m}_{\mathrm{B}} : \mathrm{m}_{\mathrm{A}}$

 $(4) \, \mathrm{m_{_{B}}} \mathrm{v_{_{B}}} \colon \mathrm{m_{_{A}}} \mathrm{v_{_{A}}}$

Question ID: 68019114366

Ans. Official Answer NTA(2)

Sol.

45. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$):

(1)220.0

(2) 118.9

(3) 139.4

(4) 140.5

Question ID: 68019114365

Ans. Official Answer NTA(3)

Sol.

- 46. In an expression $a \times 10^b$:
 - (1) a is order of magnitude for $b \le 5$
 - (2) b is order of magnitude for $5 < a \le 10$
 - (3) b is order of magnitude for $a \le 5$
 - (4) b is order of magnitude for $a \ge 5$

Question ID: 68019114364

Ans. Official Answer NTA(3)

Sol.

47. In the given circuit, the terminal potential difference of the cell is:

(1) 1.5 V

(2) 2V

(3)4V

(4)3V

Question ID: 68019114373

Ans. Official Answer NTA(2)

Sol.

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the 48. nucleons and nuclear mass of the given nucleus:

 $(1) 2\mu g$

 $(2) 10 \mu g$

 $(3) 20 \mu g$

 $(4) 0.2 \mu g$

Question ID: 68019114379

Ans. Official Answer NTA(3)

Sol.

49. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is: (Assume h = 6.63×10^{-34} J s, me = 9.0×10^{-31} kg and mp = 1836 times m.)

(1) $1:\frac{1}{\sqrt{1836}}$ (2) 1:1836

 $(3) 1: \frac{1}{1836}$

 $(4) 1: \sqrt{1836}$

Question ID: 68019114377

Ans. Official Answer NTA (2)

Sol.

50. Three bodies A, B and C have equal kinetic energies and their masses are 400g, 1.2 kg and 1.6 kg respetively. The ratio of their linear momenta is:

(1) $\sqrt{3}:\sqrt{2}:1$

(2) $1:\sqrt{3}:2$

(3) $\sqrt{2}:\sqrt{3}:1$ (4) $1:\sqrt{3}:\sqrt{2}$

Question ID: 68019114368

Official Answer NTA(2) Ans.

Sol.

An electric field, $\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector $\hat{n} = \left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right)$. 51.

The electric flux for that surface is Vm.

Question ID: 68019114388

Official Answer NTA (12) Ans.

Sol.

52. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be $\times 10^{-3}$ rad.

Question ID: 68019114392

Official Answer NTA (6) Ans.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

Sol.

53. A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100Ω is 'slowly and uniformly being pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is $\times 10^{-6}$)J.

Question ID: 68019114393

Ans. Official Answer NTA(3)

Sol.

54. A liquid column of height 0.04 cm balances excess pressure of a soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is cm.(if g = 10 ms⁻²)

Question ID: 68019114386

Ans. Official Answer NTA (7)

Sol.

55. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is_____.

Question ID: 68019114387

Ans. Official Answer NTA (16)

Sol.

An electron with kinetic energy 5 eV enters a region of uniform magnetic field of $3\mu T$ perpendicular to its direction. An electric field E is applied perpendicular to the "direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is ____NC^{-1} (Given, mass of electron = 9×10^{-31} kg, electric charge = 1.6×10^{-19} C)

Question ID: 68019114390

Ans. Official Answer NTA (4)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

Sol.

57. A uniform thin metal plate of mass 10kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is _____.

Question ID: 68019114385

Ans. Official Answer NTA (15)

Sol.

58. Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is _____.

Question ID:68019114384

Ans. Official Answer NTA (3)

Sol.

59. Resistance of a wire at 0°C, 100°C and t°C is found to be 10Ω, 10.2Ω and 10.95Ω respectively. The temperature t in Kelvin scale is _____.

Question ID: 68019114389

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 08 April Shift-1

Ans. Official Answer NTA (748)

Sol.

60. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____ × 10^5 m/s approximately.

$$\left(\frac{1}{4\pi \in_0} = 9 \times 10^9 \text{ SI unit, mass of } \alpha \text{ particle} = 6.72 \times 10^{-27} \text{kg}\right)$$

Question ID: 68019114391

Ans. Official Answer NTA (156)

Sol.

