JEE Main April 2024 Question Paper With Text Solution 04 April | Shift-2

PHYSICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

31. An electric bulb rated 50 W- 200 V is connected across a 100 V supply. The power dissipation of the bulb is :

- (1) 50 W
- (2) 12.5 W
- (3) 100 W
- (4) 25 W

Question ID: 68019113835

Ans. Official Answer NTA(2)

Sol.

32. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Number of photons increases with increase in frequency of light.

Reason R: Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) A is correct but R is not correct.
- (2) Both A and R are correct and R is NOT the correct explanation of A.
- (3) Both A and R are correct and R is the correct explanation of A.
- (4) A is not correct but R is correct.

Question ID: 68019113840

Ans. Official Answer NTA (4)

Sol.

- 33. The magnetic moment of a bar magnet is 0.5 am^2 . It is suspended in a uniform magnetic field of 8×10^{-2} T. The work done in rotating it from its most stable to most unstable position is :
 - $(1) 4 \times 10^{-2} J$
 - (2) 16×10^{-2} J
 - (3) Zero
 - $(4) 8 \times 10^{-2} \text{ J}$

Question ID: 68019113836

Ans. Official Answer NTA (4)

Sol.

- 34. A charge q is placed at the center of one f the surface of a cube. The flux linked with the cube is:
 - $(1) \frac{q}{2 \in_0}$
- $(2) \frac{q}{8 \in_{0}}$
- $(3) \frac{q}{4 \in_{0}}$
- (4) Zero

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

Question ID: 68019113834

Ans. Official Answer NTA(1)

Sol.

- 35. According to Bohr's theory, the moment of momentum of an electron revolving in 4th orbit of hydrogen atom is :
 - (1) $2\frac{h}{\pi}$
- (2) $8\frac{h}{\pi}$
- $(3) \frac{h}{\pi}$
- $(4) \frac{h}{2\pi}$

Question ID: 68019113841

Ans. Official Answer NTA(1)

Sol.

- 36. Applying the principle of homogeneity of dimensions, determine which one is correct, where T is time period, G is gravitational constant, M is mass, r is radius of orbit.
 - (1) $T^2 = 4\pi^2 r^3$
 - (2) $T^2 = \frac{4\pi^2 r^3}{GM}$
 - (3) $T^2 = \frac{4\pi^2 r^2}{GM}$
 - (4) $T^2 = \frac{4\pi^2 r}{GM^2}$

Question ID: 68019113825

Ans. Official Answer NTA(2)

Sol.

37. A sample of gas at temperature T is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma = 3/2$. The work done by the gas in the process is:

 $(\mu = 1 \text{ mole})$

- (1) $RT \left[\sqrt{2} 2 \right]$
- $(2) RT \left[2\sqrt{2} 1 \right]$
- $(3) RT \left[1 2\sqrt{2}\right]$
- $(4) RT \left[2 \sqrt{2} \right]$

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

Question ID: 68019113832

Ans. Official Answer NTA (4)

Sol.

38. Identify the logic gate given in the circuit:

- (1) NAND gate
- (2) AND gate
- (3) NOR gate
- (4) OR gate

Question ID: 68019113842

Ans. Official Answer NTA(4)

Sol.

39. A 90 kg body placed at 2R distance from surface of earth experiences gravitational pull of:

 $(R = Radius of earth, g = 10 m s^{-2})$

- (1) 300 N
- (2) 225 N
- (3) 100 N
- (4) 120 N

Question ID: 68019113828

Ans. Official Answer NTA(3)

Sol.

40. Correct formula for height of a satellite from earths surface is:

$$(1) \left(\frac{T^2 R^2 g}{4\pi} \right)^{1/2} - R$$

$$(2)\left(\frac{\mathrm{T}^2\mathrm{R}^2\mathrm{g}}{4\pi}\right)^{1/3}+\mathrm{R}$$

$$(3) \left(\frac{T^2 R^2}{4\pi^2 g} \right)^{1/3} - R$$

$$(4) \left(\frac{T^2 R^2 g}{4\pi^2} \right)^{1/3} - R$$

Question ID: 68019113830

Ans. Official Answer NTA (4)

Sol.

- 41. Arrange the following in the ascending order of wavelength:
 - A. Gamma rays (λ_1)
 - B. x rays (λ_2)
 - C. Infrared waves (λ_2)
 - D. Microwaves (λ_4)

Choose the most appropriate answer from the options given below

- (1) $\lambda_4 < \lambda_3 < \lambda_2 < \lambda_1$
- (2) $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$
- (3) $\lambda_2 < \lambda_1 < \lambda_2 < \lambda_3$
- (4) $\lambda_4 < \lambda_3 < \lambda_1 < \lambda_2$

Question ID: 68019113838

Ans. Official Answer NTA (2)

Sol.

42. Which of the diode circuit shows correct biasing used for the measurement of dynamic resistance of p-n junction diode:

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

Question ID: 68019113824

Ans. Official Answer NTA (2)

Sol.

43. Match List I with List II

List I

A. Purely capacitive circuit

B. Purely inductive circuit

C. LCR series at resonance

D. LCR series circuit

List II I ↑

I. 90°

II.

III. $\frac{V}{\theta}$

IV. 90°

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

Choose the correct answer from the options given below:

- (1) A-IV, B- I, C- II, D- III
- (2) A-I, B- IV, C- II, D- III
- (3) A-IV, B- I, C- III, D- II
- (4) A-I, B- IV, C- III, D- II

Question ID: 68019113837

Ans. Official Answer NTA(2)

Sol.

- 44. The translational degrees of freedom (f_t) and rotational degrees of freedom (f_t) of CH_4 molecule are:
 - $(1) f_t = 3 \text{ and } f_r = 3$
 - $(2) f_t = 2 \text{ and } f_r = 3$
 - $(3) f_t = 3 \text{ and } f_r = 2$
 - $(4) f_{t} = 2 \text{ and } f_{r} = 2$

Question ID: 68019113833

Ans. Official Answer NTA(1)

Sol.

- 45. The width of one of the two slits in a Young's double slit experiment is 4 times that of the other slit. The ratio of the maximum of the minimum intensity in the interfrence pattern is:
 - (1) 16:1
 - (2)1:1
 - (3)9:1
 - (4)4:1

Question ID: 68019113839

Ans. Official Answer NTA(3)

Sol.

- 46. A 2 kg brick begins to slide over a surface which is inclined at an angle of 45° with respect to horizontal axis.

 The co-efficient of static friction between their surfaces is:
 - (1) 1
 - (2) 1.7

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

- $(3) \ \frac{1}{\sqrt{3}}$
- (4) 0.5

Question ID: 68019113827

Ans. Official Answer NTA(1)

Sol.

47. In simple harmonic motion, the total mechanical energy of given system is E. If mass of oscillating particle P is doubled then the new energy of tghe system for same amplitude is:

- $(1) \; \frac{\mathrm{E}}{\sqrt{2}}$
- (2)E
- (3)2E
- (4) $E\sqrt{2}$

Question ID: 68019113843

Ans. Official Answer NTA(2)

Sol.

48. A cyclist starts from the point P of a circular ground of radius 2 km and travels along its circumference to the point S. The displacement of a cyclist is:

- (1) $\sqrt{8} \text{ km}$
- (2) 4 km
- (3) 6 km
- (4) 8 km

Question ID: 68019113826

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

Ans. Official Answer NTA(1)

Sol.

49. A body of m kg slides from rest along the curve of vertical circle from point A to B in friction less path. The velocity of the body at B is:

(given, R = 14 m, $g = 10 \text{ m/s}^2$ and $\sqrt{2} = 1.4$)

- $(1) 19.8 \,\mathrm{m/s}$
- $(2) 10.6 \,\mathrm{m/s}$
- $(3) 21.9 \,\mathrm{m/s}$
- $(4) 16.7 \, \text{m/s}$

Question ID: 68019113829

Ans. Official Answer NTA(3)

Sol.

50. Given below are two statements:

Statement I: The contact angle between a solid and a liquid is a property of rthe material of the solid and liquid as well.

Statement II: The rise of a liquid in a capillary tube does not depend on the inner radius of the tube.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is true but Statement II is false.
- (4) Statement I is false but Statement II is true.

Question ID: 68019113831

Ans. Official Answer NTA(3)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

Sol.

Two parallel long current carrying wire separated by a distance 2r are shown in the figure. The ratio of magnetic field at A to the magnetic field produce at C is $\frac{x}{7}$. The value of x is _____.

Question ID: 68019113847

Ans. Official Answer NTA(5)

Sol.

52. Two wires A and B are made up of the same material and have the same mass. Wire A has radius of 2.0 mm and wire B has radius of 4.0 mm. The resistance of wire B is 2Ω . The resistance of wire A is Ω .

Question ID: 68019113848

Ans. Official Answer NTA (32)

Sol.

53. A light ray is incident on a glass slab of thickness $4\sqrt{3}$ cm and refractive index $\sqrt{2}$. The angle of incidence is equal to the critical angle for teh glass slab with air. The lateral displacement of ray after passing through glass slab is ____ cm.

(Given $\sin 15^\circ = 0.25$)

Question ID: 68019113845

Ans. Official Answer NTA(2)

Sol.

54. A bus moving along a straight highway with speed of 72 km/h is brought to halt within 4s after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is _____m.

Question ID: 68019113852

Ans. Official Answer NTA (40)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

55.	The displacement of a particle executing SHM is given by $x = 10 \sin \left(wt + \frac{\pi}{3} \right) m$. The time period of motion
	is 3.14 s. The velocity of the particle at $t = 0$ is
Quest	ion ID: 68019113849
Ans.	Official Answer NTA(10)
Sol.	
56.	A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V. The battery is now disconnected and a dielectric slab ($\epsilon_r = 6$) is inserted between the plates. The change in its potential energy after inserting the dielectric slab is×10 ⁻¹² J.
Quest	ion ID : 68019113853
Ans.	Official Answer NTA (750)
Sol.	
57.	Mercury is filled in a tube radius 2 cm up to height of 30 cm. The force exerted by merury on the bottom of the tube isN.
	(Given, atmospheric pressure = 10^5 Nm ⁻² , density of mercury = 1.36×10^4 kg m ⁻³ , g = 10 m s ⁻² , $\pi = \frac{22}{7}$)
Quest	ion ID: 68019113850
Ans.	Official Answer NTA (177)
Sol.	
58.	In a system two particles of masses $m_1 = 3$ kg and $m_2 = 2$ kg are placed at certain distance from each other. The particle of mass m1 is moved towards the center of mass of the system through a distance 2 cm. In order to keep the center of mass of the system at the original position, the particle of mass m_2 should move towards the center of mass by the distance cm.
Quest	ion ID: 68019113851
Ans.	Official Answer NTA(3)
Sol.	
59.	The disintegration energy Q for the nuclear fission of 235 U \rightarrow 140 Ce 94 Zr + n is MeV.
	Given atomic masses of 235 U: 235.0439u; 140 Ce: 139.9054u,
	⁹⁴ Zr : 93.9063u; n : 1.0086u ,
	value of $c^2 = 931 \text{MeV} / \text{u}$.
Quest	ion ID: 68019113844
Ans.	Official Answer NTA (208)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Main April 2024 | 04 April Shift-2

Sol.

60. A rod of length 60 cm rotates with a uniform angular velocity 20 rad s-1 about its perpendicular bisector, in a uniform magnetic filed 0.5 T.The direction of magnetic field is parallel to the axis of rotation. The difference between the two ends of the rod is ______ V.

Question ID: 68019113846

Ans. Official Answer NTA (0)

Sol.

MATRIX JEE ACADEMY