JEE Main July 2021 Question Paper With Text Solution 20 July. | Shift-2

PHYSICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN JULY 2021 | 20TH JULY SHIFT-2

SECTION - A

- 1. With what speed should a galaxy move outward with respect to earth so that the sodium-D line at wavelength 5890Å is observed at 5896Å?
 - (1) 296 km/sec
 - (2) 336km/sec
 - (3) 306 km/sec
 - (4) 322 km/sec

Ans. Official Answer NTA (3)

Sol.
$$\frac{\lambda_r}{\lambda_s} = \sqrt{\frac{1+\beta}{1-\beta}}$$

$$\left\{ \beta = \frac{\lambda}{c} \right\}$$

$$\frac{\lambda_{\rm r}}{\lambda_{\rm s}} = (1+\beta)^{\frac{1}{2}} (1-\beta)^{-\frac{1}{2}}$$

If
$$\beta$$
<<1

$$\frac{\lambda_{r} - \lambda_{s}}{\lambda_{s}} = \left(1 + \beta\right)^{1} - 1$$

$$\frac{6}{5890} = \frac{v}{c}$$

$$v \approx 306 \text{ km/s}$$

- 2. A body rolls down an inclined plane without slipping. The kinetic energy of rotation is 50% of its translational kinetic energy. The body is:
 - (1) Solid cylinder
 - (2) Hollow cylinder
 - (3) Ring
 - (4) Solid sphere

Ans. Official Answer NTA (1)

Sol.
$$R.K.E = \frac{1}{2} T.K.E$$

$$\frac{1}{2}I\omega^2 = \frac{1}{2} \times \left(\frac{1}{2}mv^2\right)$$

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Physics)

JEE Main July 2021 | 20 July Shift-2

For rolling without slipping $\omega = \frac{v}{r}$

$$\frac{1}{2}I\frac{v^2}{R^2} = \frac{1}{4}mv^2$$

$$I = \frac{mR^2}{2}$$

Body is a uniform disc or a uniform solid cylinder.

- 3. If the Kinetic energy of a moving body becomes four times its initial kinetic energy, then the percentage change in its momentum will be:
 - (1) 400%
 - (2) 300%
 - (3) 100%
 - (4) 200%

Ans. Official Answer NTA (3)

Sol.
$$p = \sqrt{2mk}$$

$$p' = \sqrt{2m(4k)} = 2p$$

Percentage change = $\frac{2p-p}{p} \times 100 = 100\%$

- 4. The magnetic susceptibility of a material of a rod is 499. Permeability in vacuum is $4\pi \times 10^{-7} \, \text{H} \, / \, \text{m}$. Absolute permeability of the material of the rod is :
 - (1) $\pi \times 10^{-4} \,\mathrm{H/m}$
 - (2) $4\pi \times 10^{-4} \, \text{H} \, / \, \text{m}$
 - (3) $2\pi \times 10^{-4} \,\mathrm{H/m}$
 - (4) $3\pi \times 10^{-4} \text{ H/m}$

Ans. Official Answer NTA (3)

Sol.
$$\mu_r = 1 + x$$

 ${x = magnetic susceptibility}$

$$=500$$

$$\mu = \mu_0 \; \mu_r = 4\pi \times 10^{-7} \times 500$$

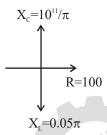
$$= 2\pi \times 10^{-4} \text{H/m}$$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

 $\textbf{Website:} www.matrixedu.in; \ Email: smd@matrixacademy.co.in$

JEE Main July 2021 | 20 July Shift-2


- 5. For a series LCR circuit with $R = 100_{\Omega}$, L = 0.5 mH and C = 0.1 pF connected across 220 V–50 Hz AC supply, the phase angle between current and supplied voltage and the nature of the circuit is:
 - (1) $\approx 90^{\circ}$, predominantly capacitive circuit
 - (2) 0°, resistive circuit
 - (3) 0°, resonance circuit
 - (4) $\approx 90^{\circ}$, predominantly inductive circuit

Ans. Official Answer NTA (1)

Sol.
$$X_C = \frac{1}{\omega C} = \frac{1}{(100\pi) \times 0.1 \times 10^{-12}}$$

$$X_{\mathrm{C}} = \frac{10^{11}}{\pi}$$

$$X_{L} = \omega L = (100\pi) \times 0.5 \times 10^{-3}$$

= 0.05 π

$$X_C >> R$$
 and X_L

So Ξ will almost be aligned with X_C

 $\theta \approx 90^{\circ}$, it will be predominantly capacitive circuit

6. A particle is making simple harmonic motion along the X-axis. If at a distances x_1 and x_2 from the mean position the velocities of the particle are v_1 and v_2 respectively. The time period of its oscillation is given as:

(1)
$$T = 2\pi \sqrt{\frac{x_2^2 + x_1^2}{\upsilon_1^2 + \upsilon_2^2}}$$

(2)
$$T = 2\pi \sqrt{\frac{x_2^2 - x_1^2}{\upsilon_1^2 - \upsilon_2^2}}$$

(3)
$$T = 2\pi \sqrt{\frac{x_2^2 - x_1^2}{v_1^2 + v_2^2}}$$

MATRIX JEE ACADEMY

JEE Main July 2021 | 20 July Shift-2

(4)
$$T = 2\pi \sqrt{\frac{x_2^2 + x_1^2}{\upsilon_1^2 - \upsilon_2^2}}$$

Ans. Official Answer NTA (2)

Sol.
$$v_1^2 = \omega^2 (A^2 - x_1^2)$$
(1)

$$v_2^2 = \omega^2 (A^2 - x_2^2)$$
(2)

From (1) and (2)

$$\frac{v_1^2 + \omega^2 x_1^2}{v_2^2 + \omega^2 x_2^2} = 1$$

$$\omega = \sqrt{\frac{v_1^2 - v_2^2}{x_2^2 - x_1^2}}$$

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{x_2^2 - x_1^2}{v_1^2 - v_2^2}}$$

- 7. A body at rest is moved along a horizontal straight line by a machine delivering a constant power. The distance moved by the body in time 't' is proportional to:
 - (1) $t^{\frac{1}{2}}$
 - (2) $t^{\frac{1}{4}}$
 - (3) $t^{\frac{3}{4}}$
 - $(4)_{t^{\frac{3}{2}}}$

Ans. Official Answer NTA (4)

Sol. power
$$p = \frac{dk}{dt} = const$$

$$\frac{d}{dt} \left(\frac{1}{2} m v^2 \right) = p$$

$$\frac{1}{2}m \times 2v \frac{dv}{dt} = p$$

$$\int_0^v v dv = \frac{p}{m} \int_0^t dt$$

$$\frac{v^2}{2} = \frac{pt}{m}$$

$$v = \sqrt{\frac{2p}{m}} \ t^{\frac{1}{2}}$$

$$\int_0^x dx = \sqrt{\frac{2p}{m}} \int_0^t t^{\frac{1}{2}} dt$$

$$x = \sqrt{\frac{2p}{m}} \ \frac{t^{3/2}}{3/2}$$

$$x \propto t^{3/2}$$

A boy reaches the airport and finds that the escalator is not working. He walks up the stationary escalator in time t₁. If he remains stationary on a moving escalator then the escalator takes him up in the time t₂.
 The time taken by him to walk up on the moving escalator will be:

$$(1) \ \frac{t_1 t_2}{t_2 + t_1}$$

$$(2) \ \frac{t_1 t_2}{t_2 - t_1}$$

(3)
$$t_2 - t_1$$

$$(4) \ \frac{t_1 + t_2}{2}$$

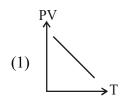
Sol. Suppose length of escalator = L

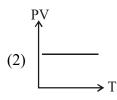
$$v_{\text{boy/esc}} \frac{L}{t_1} = \text{velocity of boy on stationary escalator}$$

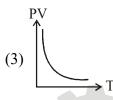
$$v_{esc} = \frac{L}{t_2}$$

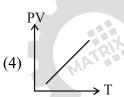
velocity of boy on moving escalator = v_{boy}

$$v_{\text{boy}} = v_{\text{boy/esc}} + v_{\text{esc}} = L \left(\frac{1}{t_1} + \frac{1}{t_2} \right)$$




JEE Main July 2021 | 20 July Shift-2


$$t = \frac{L}{v_{boy}} = \frac{L}{L\left(\frac{1}{t_1} + \frac{1}{t_2}\right)}$$


$$t = \frac{t_1 t_2}{t_2 + t_1}$$

9. Which of the following graphs represent the behavior of an ideal gas? Symbols have their usual meaning.

Ans. Official Answer NTA (4)

Sol.
$$pv = (nR)T$$

nR = const. for a closed system

$$pv = y$$
 and $T = x$

y = mx \Rightarrow Straight line with positive slope

10. The length of a metal viree is l_1 , when the tension in it is T_1 and is l_2 when the tension is T_2 . The natural length of the wire is:

$$(1) \frac{l_1 T_2 - l_2 T_1}{T_2 - T_1}$$

(2)
$$\sqrt{l_1 l_2}$$

(3)
$$\frac{l_1 T_2 + l_2 T_1}{T_2 + T_1}$$

$$(4) \; \frac{l_1 + l_2}{2}$$

Official Answer NTA (1) Ans.

Sol.
$$\frac{T_1}{A} = \frac{y(l_1 - L)}{L}$$
(1)

$$\frac{\mathrm{T_2}}{\mathrm{A}} = \frac{\mathrm{y}(l_2 - \mathrm{L})}{\mathrm{L}} \qquad \dots (2)$$

$$(1) \div (2)$$

$$\frac{T_1}{T_2} = \frac{l_1 - L}{l_2 - L}$$

$$L = \frac{l_1 T_2 - l_2 T_1}{T_2 - T_1}$$

11. If time(t), velocity(v), and angular momentum(l) are taken as the fundamental units. Then the dimension of mass (m) in terms of t, v, and l is :

(1)
$$[t^1 v^2 l^{-1}]$$

(2)
$$[t^{-1}v^1l^{-2}]$$

(3)
$$[t^{-1}v^{-2}l^{1}]$$

$$(4) [t^{-2}v^{-1}l^{1}]$$

Official Answer NTA (3) Ans.

Sol.
$$m = t^a v^b l^c$$

$$M = T^a (LT^{-1})^b \left(ML^2T^{-1}\right)^c$$

$$M = M^c L^{b+2c} T^{a-b-c}$$

$$c = 1$$

$$b + 2c = 0$$

$$\Rightarrow b = -2$$

$$b + 2c = 0$$
$$a - b - c = 0$$

$$\Rightarrow a = -1$$

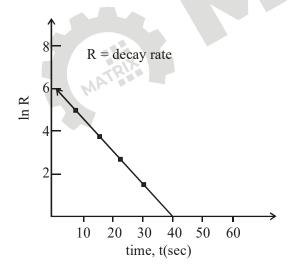
$$\mathbf{m} = t^{-1} v^{-2} l^{1}$$

- 12. Two small drops of mercury each of radius R coalesce to from a single large drop. The ratio of total surface energy before and after the change is:
 - (1) 1 : 2
 - (2) $2^{\frac{1}{3}}:1$
 - (3) 2 : 1
 - $(4)_{1:2^{\frac{1}{3}}}$
- Ans. Official Answer NTA (2)
- Sol. Initial surface energy = $T \times 4\pi R^2 \times 2$ {T = surface tension}
 - Final surface energy = $T \times 4\pi (R')^2$ $\{\frac{4}{3}\pi (R')^3 = 2 \times \frac{4}{3}\pi R^3, R' = 2^{\frac{1}{3}}R\}$
 - $= T \times 4\pi \times R^2 \times 2^{2/3}$
 - $\frac{U_i}{U_f} = \frac{2^{\frac{1}{3}}}{1}$
- 13. An electron having de-Broglie wavelength λ is incident on a target in a X-ray tube. Cut-off wavelength of emitted X-ray is :
 - $(1) \frac{2mc\lambda^2}{h}$
 - (2) $\frac{hc}{mc}$
 - $(3) \frac{2m^2c^2\lambda^2}{h^2}$
 - (4) 0
- Ans. Official Answer NTA (1)
- Sol. K.E of electron = $\frac{\left(h/\lambda\right)^2}{2m} = \frac{hc}{\lambda_c}$ { λ_c = cut off wavelength of x-ray}
 - $\lambda_c = \frac{2mc\,\lambda^2}{h}$

JEE Main July 2021 | 20 July Shift-2

- 14. A satellite is launched into a circular orbit of radius R around earth, while a second satellite is launched into a circular orbit of radius 1.02R. The percentage difference in the time periods of the two satellites is:
 - (1) 2.0
 - (2) 0.7
 - (3) 3.0
 - (4) 1.5

Ans. Official Answer NTA (2)


$$Sol. \qquad T = \frac{2\pi R^{3/2}}{\sqrt{GM}}$$

$$\frac{dT}{T} = \frac{3}{2} \frac{dR}{R}$$

$$\frac{dT}{T} \times 100 = \frac{3}{2} \times \frac{0.02R}{R} \times 100 = 3\%$$

15. For a certain radioactive process the graph between ln R and t(sec) is obtained as shown in the figure.

Then the value of half life for the unknown radioactive material is approximately:

- (1) 6.93 sec
- (2) 2.62 sec
- (3) 9.15 sec
- (4) 4.62 sec

JEE Main July 2021 | 20 July Shift-2

Ans. Official Answer NTA (4)

Sol.
$$R = R_0 e^{-\lambda t}$$

$$lnR = ln R_0 - \lambda t$$

$${y = c - mx}$$

Slope of line =
$$\frac{-6}{40} = -\lambda$$

$$T_{1/2} = \frac{l n 2}{\lambda} = \frac{0.693}{6} \times 40 = 4.62 \text{ sec}$$

16. Two vectors \vec{p} and \vec{Q} have equal magnitudes. If the magnitude of $\vec{P} + \vec{Q}$ is n times the magnitude of $\vec{P} - \vec{Q}$, then angle between \vec{p} and \vec{Q} is:

$$(1) \sin^{-1} \left(\frac{n^2 - 1}{n^2 + 1} \right)$$

$$(2) \sin^{-1}\left(\frac{n-1}{n+1}\right)$$

$$(3) \cos^{-1}\left(\frac{n-1}{n+1}\right)$$

(4)
$$\cos^{-1}\left(\frac{n^2-1}{n^2+1}\right)$$

Ans. Official Answer NTA (4)

Sol.
$$|\vec{p} + \vec{Q}| = n |\vec{p} - \vec{Q}|$$

Suppose angle between \vec{p} and $\vec{Q} = \theta$

$$P^{2} + Q^{2} + 2PQ\cos\theta = n^{2}(P^{2} + Q^{2} - 2PQ\cos\theta)$$

Since,
$$P = Q$$

$$\cos\theta = \frac{n^2 - 1}{n^2 + 1}$$

$$\theta = \cos^{-1}\left(\frac{n^2 - 1}{n^2 + 1}\right)$$

JEE Main July 2021 | 20 July Shift-2

- 17. In an electromagnetic wave the electric field vector and magnetic field vector are given as $\vec{E} = E_0 \hat{i}$ and $\vec{B} = B_0 \hat{k}$ respectively. The direction of propagation of electromagnetic wave is along :
 - (1) \hat{j}
 - (2) (\hat{k})
 - $(3)\left(-\hat{k}\right)$
 - $(4)\left(-\hat{j}\right)$
- Ans. Official Answer NTA (4)
- Sol. Direction of propagation of electromagnetic wave is in the direction of vector $\vec{E} \times \vec{B}$ i.e. $(-\hat{j})$ in the given question.
- 18. The correct relation between the degrees of freedom f and the ratio of specific heat γ is;
 - $(1) f = \frac{\gamma + 1}{2}$
 - $(2) f = \frac{2}{\gamma 1}$
 - $(3) f = \frac{1}{\gamma + 1}$
 - (4) $f = \frac{2}{\gamma + 1}$
- Ans. Official Answer NTA (2)
- Sol. $\gamma = \frac{f+2}{f}$
- or $f = \frac{2}{\gamma 1}$
- 19. At an angle of 30° to the magnetic meridian, the apparent dip is 45°. Find the true dip :
 - $(1)^{\tan^{-1}}\frac{2}{\sqrt{3}}$
 - (2) $\tan^{-1} \sqrt{3}$
 - (3) $\tan^{-1} \frac{\sqrt{3}}{2}$
 - (4) $\tan^{-1} \frac{1}{\sqrt{3}}$

JEE Main July 2021 | 20 July Shift-2

Ans. Official Answer NTA (3)

Sol. $\tan \theta' = \frac{\tan \theta}{\cos \alpha}$

Where

 θ' = apparent dip

 θ = true dip

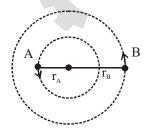
 α = angle with magnetic meridian in horizontal plane

$$\tan 45^{\circ} = \frac{\tan \theta}{\cos(30^{\circ})}$$

$$\theta = \tan^{-1} \frac{\sqrt{3}}{2}$$

20. Consider a binary star system of star A and star B with masses m_A and m_B revolving in a circular orbit of radii r_A and r_B , respectively. If T_A and T_B are the time period of star A and star B, respectively, then:

$$(1) \frac{T_A}{T_B} = \left(\frac{r_A}{r_B}\right)^{\frac{3}{2}}$$


(2)
$$T_A > T_B (if r_A > r_B)$$

$$(3) T_A = T_B$$

(4)
$$T_A > T_B (if m_A > m_B)$$

Ans. Official Answer NTA (3)

Sol. If a binary star system is revolving in a circular orbit about their COM under mutual gravitational attraction, then their time periods are exactly equal.

$$\frac{Gm_{_{A}}m_{_{B}}}{\left(r_{_{A}}+r_{_{B}}\right)^2} = \frac{m_{_{A}}v_{_{A}}^2}{r_{_{A}}}$$

$$v_{A} = \sqrt{\frac{G m_{B} r_{A}}{\left(r_{A} + r_{B}\right)^{2}}}$$

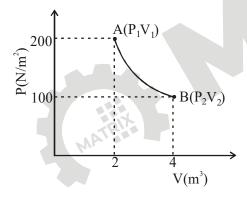
$$v_{B} = \sqrt{\frac{G m_{A} r_{B}}{\left(r_{A} + r_{B}\right)^{2}}}$$

MATRIX JEE ACADEMY

$$r_{A} = \frac{\left(r_{A} + r_{B}\right)m_{B}}{m_{A} + m_{B}}$$

$$r_{\mathrm{B}} = \frac{\left(r_{\mathrm{A}} + r_{\mathrm{B}}\right)m_{\mathrm{A}}}{m_{\mathrm{A}} + m_{\mathrm{B}}}$$

$$T_{A} = \frac{2\pi r_{A}}{v_{A}}$$


$$T_{\rm B} = \frac{2\pi r_{\rm B}}{v_{\rm B}}$$

On putting the values of $r_{_{A}}$, $r_{_{B}}$, $v_{_{A}}$ & $v_{_{B}}$

$$T_A = T_B$$

SECTION - B

One mole of an ideal gas at 27° C is taken from A to B as shown in the given PV indicator diagram. The work done by the system will be _____× 10^{-1} J. [Given : R = 8.3 J/mole K, ln2 = 0.6931] (Round off to the nearest integer)

Ans. Official Answer NTA (17258)

Sol. $P_1V_1 = P_2V_2 \Rightarrow$ Isothermal process

W = nRT
$$ln \frac{v_2}{v_1}$$

= 1 × 8.3 × 300 × ln 2
= 1725.82 = 17258.2 × 10⁻¹ J

Nearest integer = 17258

MATRIX

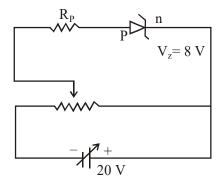
Question Paper With Text Solution (Physics)

JEE Main July 2021 | 20 July Shift-2

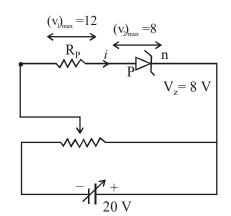
- 2. Two bodies, a ring and a solid cylinder of same material are rolling down without slipping an inclined plane. The radii of the bodies are same. The ratio of velocity o the centre of mass at the bottom of the inclined plane of the ring to that of the cylinder is $\frac{\sqrt{x}}{2}$. Then, the value of x is _____.
- Ans. Official Answer NTA (3)
- Sol. Conservation of energy

For Ring :
$$mgH = \frac{1}{2}mv_1^2 + \frac{1}{2}(mR^2)\left(\frac{v_1^2}{R^2}\right)$$

$$v_1 = \sqrt{gH}$$


For solid cylinder:
$$MgH = \frac{1}{2}Mv_2^2 + \frac{1}{2}\left(\frac{MR^2}{2}\right)\left(\frac{v_2^2}{R^2}\right)$$

$$v_2 = \sqrt{\frac{4}{3}gH}$$


$$\frac{\mathbf{v}_1}{\mathbf{v}_2} = \frac{\sqrt{3}}{2}$$

$$x = 3$$

3. A zener diode having zener voltage 8V and power dissipation rating of 0.5 W is connected across a potential divider arranged with maximum potential drop across zener diode is as shown in the diagram. The value of protective resistance R_p is $\underline{\hspace{0.5cm}}_{\Omega}$.

Ans. Official Answer NTA (192)

$$8 \times i = 0.5$$

 $i = 0.0625 \text{ A}$
For $R_p \Rightarrow V = iR_p$
 $12 = 0.0625 \times R_p$
 $R_p = 192$

4. A body of mass 'm' is launched up on a rough inclined plane making an angle of 30° with the horizontal.

The off is the first transformation of \sqrt{x} is the first transformation of \sqrt{x} .

The coefficient of friction between the body and plane is $\frac{\sqrt{x}}{5}$ if the time of ascent is half of the time of

descent. The value of x is _____.

Ans. Official Answer NTA (3)

Sol. For ascent:

Sol.

$$a = g (\sin\theta + \mu \cos\theta)$$

$$s = vt - \frac{1}{2}at^2$$

$$s = 0 - \frac{1}{2} \left(-g \left(\sin \theta + \mu \cos \theta \right) \right) t_1^2$$

$$t_1^2 = \frac{2s}{g(\sin\theta + \mu\cos\theta)}$$

For Descent : $a = g(\sin \theta - \mu \cos \theta)$

$$t_2^2 = \frac{2s}{g(\sin\theta - \mu\cos\theta)}$$

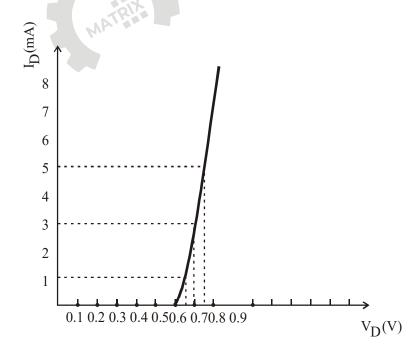
 $2t_1 = t_2$ (according to question)

$$4t_1^2 = t_2^2$$

$$\frac{4}{g(\sin\theta + \mu\cos\theta)} = \frac{1}{g(\sin\theta - \mu\cos\theta)}$$

Putting
$$\theta = 30^{\circ}$$

$$\mu = \frac{3}{5\sqrt{3}} = \frac{\sqrt{3}}{5}$$


$$x = 3$$

- 5. A body rotating with an angular speed of 600 rpm is uniformly accelerated to 1800 rpm in 10 sec. The number of rotations made in the process is _____.
- Ans. Official Answer NTA (200)
- Sol. For uniform angular acceleration:

$$\theta \!=\!\! \left(\frac{\omega_{\!\scriptscriptstyle i} \!+\! \omega_{\!\scriptscriptstyle f}}{2} \right) \! t$$

$$=\left(\frac{600+1800}{2}\right)\times\left(\frac{10}{60}\text{min}\right)=200 \text{ rotations}$$

6. For the forward biased diode characteristics shown in the figure, the dynamic resistance at $I_D = 3$ mA will be O.

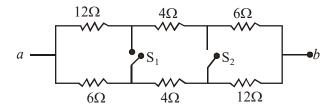
MATRIX JEE ACADEMY

JEE Main July 2021 | 20 July Shift-2

Ans. Official Answer NTA (25)

Sol.
$$R_{D} = \frac{\Delta V}{\Delta I} = \frac{0.75 - 0.7}{(5 - 3) \times 10^{-3}}$$
$$= 0.025 \times 10^{3}$$
$$= 25 \Omega$$

- 7. A series LCR circuit of $R = 5 \Omega$, L = 20 mH and $C = 0.5 \mu F$ is connected across an AC supply of 250 V, having variable frequency. The power dissipated at resonance condition is _____×10²W.
- Ans. Official Answer NTA (125)
- Sol. At resonance $z = R = 5 \Omega$ $i_{RMS} = \frac{v_{RMS}}{z} = \frac{250}{5} = 50 A$ $p = i_{RMS}^2 R = 50^2 \times 5 = 12500 = 125 \times 10^2 W$
- 8. A radioactive substance decays to $\left(\frac{1}{16}\right)^{th}$ of its initial activity in 80 days. The half life of the radioactive substance expressed in days is _____.
- Ans. Official Answer NTA (20)


Sol.
$$R = \frac{R_0}{2^n} = \frac{R_0}{16}$$

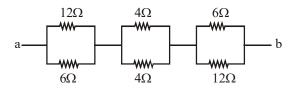
$$n = 4 \text{ half-lives}$$

$$t = 80 \text{ days} = 4T_{1/2}$$

$$T_{1/2} = 20 \text{ days}$$

9. In the given figure switches S_1 and S_2 are in open condition. The resistance across ab when the switches S_1 and S_2 are closed is Ω .

MATRIX JEE ACADEMY


MATRIX

Question Paper With Text Solution (Physics)

JEE Main July 2021 | 20 July Shift-2

Ans. Official Answer NTA (10)

sol. Equivalent circuit:

$$R_{eq} = \frac{12 \times 6}{12 + 6} + \frac{4 \times 4}{4 + 4} + \frac{12 \times 6}{12 + 6} = 10\Omega$$

10. A certain metallic surface is illuminated by monochromatic radiation of wavelength λ . The stopping potential for photoelectric current for this radiation is $3V_0$. If the same surface is illuminated with a radiation of wavelength 2λ , the stopping potential is V_0 . The threshold wavelength of this surface for photoelectric effect is λ .

Ans. Official Answer NTA (4)

Sol.
$$\frac{hc}{\lambda} - \phi = e(3V_0)$$
(1)

$$\frac{hc}{2\lambda} - \phi = eV_0 \qquad \dots (2)$$

$$(1) \div (2)$$

$$\frac{hc}{2\lambda} - \phi = 3\left(\frac{hc}{2\lambda} - \phi\right)$$

$$\phi = \frac{hc}{4\lambda} = \frac{hc}{\lambda_t}$$
 {\lambda_t} = threshold wavelength}

$$\lambda_{t} = 4\lambda$$