JEE MAIN SEP 2020 (MEMORY BASED) | $5^{\text {th }}$ Sep. SHIFT-1

Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. Voltage range of Galvanometer of resistance R is 0 to 1 V . When it's range increases up to 2 V , for this the additional resistance required in series will be :
(1) R
(2) 2 R
(3) 3 R
(4) 4 R

Ans. (1)
Sol. It is given that $\mathrm{V}_{\mathrm{g}}=\mathrm{i}_{\mathrm{g}} \mathrm{R}=1$
Let the required resistance be r
$\mathrm{i}_{\mathrm{g}}(\mathrm{R}+\mathrm{r})=2$
$\frac{\mathrm{R}+\mathrm{r}}{\mathrm{R}}=2$
$\frac{\mathrm{R}+\mathrm{r}}{\mathrm{R}}=2$
$\mathrm{r}=\mathrm{R}$
2. Which of the following graph represents relation between the image position (v) and object position (u) from the concave lens.
(1)

(2)

(3)

(4)

Ans. (1)

Sol. Byusing relation $\frac{1}{\mathrm{v}}-\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}}$
3. A bullet of mass 5 g moving with a speed of $210 \mathrm{~m} / \mathrm{s}$ hits a stationary plank and comes to rest. If half of its kinetic energy is absorbed by bullet itself and remaining half kinetic energy by plank, then what is the change in temperature of bullet in ${ }^{\circ} \mathrm{C}$: (Given specificheat of bullet is $6125 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
(1) 1
(2) 1.2
(3) 1.6
(4) 1.8

Ans. (4)
Sol. As per given condition
$\frac{1}{2} \times \frac{1}{2} \mathrm{mv}^{2}=(\mathrm{ms} \Delta \mathrm{T})_{\text {bullet }}$
$\frac{1}{2} \times \frac{1}{2} \times 5 \times 10^{-3} \times(210)^{2}=\left(5 \times 10^{-3}\right)(6125)(\Delta \mathrm{T})$
$\Delta \mathrm{T}=1.8^{\circ} \mathrm{C}$
4. In a photoelectric effect experiment potential difference between plates increases keeping incident light on cathode plate remains unchanged which of the following is correct about saturation current:
(1) Increases
(2) Decreases
(3) Remains same
(4) First increases than decreases

Ans. (3)
Sol. Saturation current depends only on intensity of incident light.
5. Acceleration due to gravity at height $\mathrm{h}=\frac{\mathrm{R}}{2}$ is equal to acceleration due to gravity at depth d from the surface of earth then find d in terms of R. where R is radius of earth.
(1) $\frac{4}{3} R$
(2) $\frac{4}{9} R$
(3) $\frac{5}{9} R$
(4) $\frac{R}{3}$

Ans. (3)
Sol. It is given that
$g_{n}=g_{d}$
$\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}=\frac{\mathrm{GM}}{\mathrm{R}^{3}}(\mathrm{R}-\mathrm{d})$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

$$
\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{R} / 2)^{2}}=\frac{\mathrm{GM}}{\mathrm{R}^{3}}(\mathrm{R}-\mathrm{d})
$$

$\frac{4 \mathrm{GM}}{9 \mathrm{R}^{2}}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}\left(1-\frac{\mathrm{d}}{\mathrm{R}}\right)$
$\frac{4}{9}=1-\frac{\mathrm{d}}{\mathrm{R}}$
$\frac{\mathrm{d}}{\mathrm{R}}=1-\frac{4}{9}=\frac{5}{9}$
$\mathrm{d}=\frac{5}{9} \mathrm{R}$
6. A disc of momentum of inertia I rotating about its own axis with angular speed w. It is placed on another disc of moment of inertia 3I which is at rest. Both disc have common axis of rotation. What will be the loss of kinetic energy upto both discs attain common angular velocity.
(1) $\frac{I \omega^{2}}{8}$
(2) $\frac{I \omega^{2}}{4}$
(3) $\frac{3 I \omega^{2}}{8}$
(4) $\frac{5 I \omega^{2}}{8}$

Ans. (3)
Sol. From angular momentum conservation
$\mathrm{I} \omega+0=\mathrm{I} \omega_{\mathrm{C}}+3 \mathrm{I} \omega_{\mathrm{C}}$
$\omega_{\mathrm{C}}=\frac{\omega}{4}$
Loss of kinetic energy $=\frac{1}{2} \mathrm{I} \omega^{2}-\frac{1}{2}(\mathrm{I}+3 \mathrm{I})\left(\frac{\omega}{4}\right)^{2}$
$=\frac{1}{2} \mathrm{I} \omega^{2}-\frac{1}{2} \mathrm{I} \frac{\omega^{2}}{4}$
$=\frac{3}{8} \mathrm{I} \omega^{2}$
7. A uniformly charged sphere of charge Q and radius R is placed at some height from ground surface and sphere is fixed. Now a charged particle of mass m and charge q is released form rest just below to the sphere. What will be speed of particle after travelling Y - distance.

(1) $\sqrt{2 g y}$
(2) $\sqrt{\frac{2 k Q q}{m} \frac{y}{R(R+y)}}$
(3) $\sqrt{2 \mathrm{gy}+\frac{2 \mathrm{kQq}}{\mathrm{m}} \frac{\mathrm{y}}{\mathrm{R}(\mathrm{R}+\mathrm{y})}}$
(4) $\sqrt{g y+\frac{k Q q}{m} \frac{y}{R(R+y)}}$

Ans. (3)
Sol. From mechanical energy conservation

$$
\begin{aligned}
& \Delta \mathrm{KE}+(\Delta \mathrm{PE})_{\text {Electo }}+(\Delta \mathrm{PE})_{\text {gravitationl }}=0 \\
& \frac{1}{2} \mathrm{mV}^{2}+\left(\mathrm{k} \frac{\mathrm{Qq}}{\mathrm{R}+\mathrm{y}}-\mathrm{k} \frac{\mathrm{Qq}}{\mathrm{R}}\right)+(-\mathrm{mgy})=0 \\
& \frac{1}{2} m V^{2}=\mathrm{mgy}+\mathrm{kQq}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}+\mathrm{y}}\right) \\
& \mathrm{V}=\sqrt{2 \mathrm{gy}+\frac{2 \mathrm{kQq}}{\mathrm{~m}} \frac{\mathrm{y}}{\mathrm{R}(\mathrm{R}+\mathrm{y})}}
\end{aligned}
$$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
8. A shell of relative density $\frac{27}{9}$ with respect to water, is just submerged in water. If it's inner and outer radius is r and R then $\frac{r}{R}$ will be :
(1) $\left(\frac{1}{3}\right)^{1 / 3}$
(2) $\left(\frac{2}{3}\right)^{1 / 3}$
(3) $\left(\frac{3}{4}\right)^{1 / 3}$
(4) $\left(\frac{5}{9}\right)^{1 / 3}$

Ans. (2)
Sol. In equilibrium
$m g=F_{B}$
$\frac{4}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right) \rho \mathrm{g}=\frac{4}{3} \pi \mathrm{R}^{3} \rho_{\mathrm{w}} \mathrm{g}$
$\left[1-\left(\frac{\mathrm{r}}{\mathrm{R}}\right)^{3}\right] \frac{27}{9} \rho_{\mathrm{w}}=\rho_{\mathrm{w}}$
$1-\frac{\mathrm{r}^{3}}{\mathrm{R}^{3}}=\frac{9}{27}$
$1-\frac{1}{3}=\frac{\mathrm{r}^{3}}{\mathrm{R}^{3}}$
$\frac{2}{3}=\frac{\mathrm{r}^{3}}{\mathrm{R}^{3}}$
$\frac{\mathrm{r}}{\mathrm{R}}=\left(\frac{2}{3}\right)^{1 / 3}$
9. Two parallel plate capacitors of capacitance C and 2 C are charged upto a potential difference V and 2 V respectively. Now these capacitors are connected in parallel to each other such that positive charged plate of capacitor C is connected to negative charged plate of capacitors 2C. Find amount of change in potential energy of system.
(1) CV^{2}
(2) $\frac{\mathrm{CV}^{2}}{2}$
(3) $2 \mathrm{CV}^{2}$
(4) $3 \mathrm{CV}^{2}$

Ans. (4)

Before

Sol.

Charge on $\mathrm{C}=\mathrm{CV}$
Charge on $2 \mathrm{C}=(2 \mathrm{C})(2 \mathrm{~V})=4 \mathrm{CV}$

From charge conservation, $\quad 2 \mathrm{C}(2 \mathrm{~V})-\mathrm{CV}=(\mathrm{C}+2 \mathrm{C}) \mathrm{V}^{\prime} \Rightarrow 3 \mathrm{CV}=3 \mathrm{CV}^{\prime} \Rightarrow \mathrm{V}^{\prime}=\mathrm{V}$
; Amount of change in potential energy of system,
$\Delta \mathrm{U}=\mathrm{U}_{\mathrm{in}}=\mathrm{Uf} \mathrm{f}_{\text {inal }}$
$=\left(\frac{1}{2} \mathrm{CV}^{2}+\frac{1}{2} 2 \mathrm{C} \times 4 \mathrm{~V}^{2}\right)-\left(\frac{1}{2} \mathrm{CV}^{2}+\frac{1}{2} \times 2 \mathrm{CV}^{2}\right)$
$\Delta \mathrm{U}=3 \mathrm{CV}^{2}$
10. A helicopter is rising up from ground with an acceleration of $\mathrm{g} \mathrm{m} / \mathrm{s}^{2}$, starting from rest. after rising a height h , it attains a velocity of vm / s. At this instant a particle is now released from helicopter. Take $\mathrm{t}=0$ at releasing time, calculate the time t when particle reaches to the ground.
(1) $\sqrt{\frac{2 h}{g}}$
(2) $2 \sqrt{\frac{2 h}{g}}$
(3) $\left(1+\sqrt{2} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}\right)$
(4) $\sqrt[4]{\frac{2 h}{g}}$

Ans. (3)

Sol.

\Rightarrow For upward motion of helicopter
$\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}$
$\mathrm{v}^{2}=0+2 \mathrm{gh}$
$v=\sqrt{2 g h}$
\Rightarrow Now particle will start moving under gravity.
$S=u t+\frac{1}{2} a t^{2}$
$-\mathrm{h}=\sqrt{2 \mathrm{gh}} \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
$\frac{1}{2} g t^{2}-\sqrt{2 g h} t-h=0$
than $t=\frac{\sqrt{2 g h} \pm \sqrt{2 g h+4 \times \frac{g}{2} \times h}}{2 \times \frac{g}{2}}$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{gh}}{\mathrm{g}}}(1+\sqrt{2})$
$\mathrm{t}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}(1+\sqrt{2})$

