JEE MAIN SEP 2020 (MEMORY BASED) | $3^{\text {RD }}$ SEP SHIFT-2
Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. In a spring-mass system mass m is performing in SHM on a line with amplitude A and frequency f. Suddenly half of the mass comes to rest just at the moment, when it crosses mean position, then the new amplitude becomes $\lambda \mathrm{A}$, then λ will be
(1) $\frac{1}{2}$
(2) $\frac{1}{\sqrt{2}}$
(3) $\sqrt{2}$
(4) 1

Ans. (3)
Sol. $\quad V_{i}=A \omega=A \sqrt{\frac{k}{m}} ; V_{f}=A^{\prime} \omega^{\prime}=A^{\prime} \sqrt{\frac{k}{\frac{m}{2}}}$
As the external force is absent, by conservation of linear momentum
$\mathrm{m}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}=\mathrm{m}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}$
$\mathrm{m} . \mathrm{A} \omega=\frac{\mathrm{m}}{2} \mathrm{~A}^{\prime} \omega^{\prime}$
m.A $\sqrt{\frac{k}{m}}=\frac{m}{2} A^{\prime} \sqrt{\frac{k}{m / 2}}$
$\mathrm{A}=\frac{1}{2} \sqrt{2} \mathrm{~A}$.
$A^{\prime}=\sqrt{2} A$
2. A block starts going up a rough inclined plane with speed V_{0} as shown in figure. After some time it reaches to starting point again, with a speed $\frac{V_{0}}{2}$. Find coefficient of friction ' μ '. Given $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

(1) 0.15
(2) 0.35
(3) 0.75
(4) 0.80

Ans. (2)

Sol.

For up the inclined motion $(\mathrm{A} \rightarrow \mathrm{B})$
$a_{1}=g \sin 30^{\circ}+\mu g \cos 30^{\circ}=5+5 \sqrt{3} \mu$
and
$\mathrm{V}_{0}^{2}-2 \mathrm{a}_{1}(\mathrm{~s})=0$
$\mathrm{s}=\frac{\mathrm{V}_{0}^{2}}{\mathrm{a}_{1}}$

For down the inclined motion $(\mathrm{B} \rightarrow \mathrm{A})$
$a_{2}=g \sin 30^{\circ}-\mu g \cos 30^{\circ}=5-5 \sqrt{3} \mu$
and
$\left(\frac{\mathrm{V}_{0}}{2}\right)^{2}=2 \mathrm{a}_{2}(\mathrm{~s})$
$\mathrm{s}=\frac{\mathrm{V}_{0}^{2}}{4 \mathrm{a}_{2}}$
From equation (i) and (ii)
$\frac{\mathrm{V}_{0}^{2}}{\mathrm{a}_{1}}=\frac{\mathrm{V}_{0}^{2}}{4 \mathrm{a}_{2}}$
$\Rightarrow \mathrm{a}_{1}=4 \mathrm{a}_{2}$
$\Rightarrow 5+5 \sqrt{3} \mu=4\{5-5 \sqrt{3} \mu\}$

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in
$\Rightarrow 5+5 \sqrt{3} \mu=20-20 \sqrt{3} \mu \Rightarrow 25 \sqrt{3} \mu=15 \Rightarrow \mu=\frac{\sqrt{3}}{5}=0.35$
3. An ideal gas is heated by 160 J of heat at constant pressure, its temperature rises by $50^{\circ} \mathrm{C}$ and if 240 J of heat is supplied at constant volume, temperature rises by $100^{\circ} \mathrm{C}$, then its degree of freedom should be :
(1) 3
(2) 5
(3) 6
(4) 7

Ans. (3)
Sol. At constant pressure :

$$
\begin{align*}
& \Delta \mathrm{Q}=\mathrm{nC}_{\mathrm{P}} \Delta \mathrm{~T} \\
& \Rightarrow \quad 160=\mathrm{nC}_{\mathrm{P}} 50 \tag{1}
\end{align*}
$$

At constant volume

$$
\begin{align*}
& \Delta \mathrm{Q}=\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{~T} \\
\Rightarrow \quad & 240=\mathrm{nC}_{\mathrm{V}} 100 \tag{2}
\end{align*}
$$

Equation (1) divided by (2)

$$
\frac{160}{240}=\frac{C_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}} \frac{50}{100}
$$

$$
f=6
$$

4. In the given diagram a 0.1 kg bullet moving with speed $20 \mathrm{~m} / \mathrm{sec}$ strikes 1.9 kg mass and get embedded in it. Find the kinetic energy of the mass with which it will strikes the ground is.

(1) 11 J
(2) 21 J
(3) 25 J
(4) 30 J

Ans. (2)

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in

Sol. Conservation of linear momentum
$0.1 \times 20=(0.1+1.9) \times v$
$\mathrm{v}=1 \mathrm{~m} / \mathrm{s}$
Using work energy theorem
$W_{\mathrm{g}}=\Delta \mathrm{k}$
$2 \times \mathrm{g} \times 1=\mathrm{k}-\frac{1}{2} \times 2 \times 1^{2}$
$\therefore \mathrm{k}=21 \mathrm{~J}$
5. A loop of area ' $S^{\prime} m^{2}$ and N turns carrying current ' i ' is placed in a uniform magnetic field ' B ' with its plane parallel to \vec{B}. If torque ' τ ' is experienced by loop due to magnetic field, find $|\vec{B}|$
(1) $\frac{\tau}{\mathrm{NiS}}$
(2) $\frac{N \tau}{i S}$
(3) $\frac{i \tau}{\mathrm{NS}}$
(4) $\frac{\mathrm{S} \tau}{\mathrm{Ni}}$

Ans. (1)

Sol.

$$
\begin{aligned}
\tau=|\overrightarrow{\mathrm{M}} \times \overrightarrow{\mathrm{B}}| & =\operatorname{NiAB} \sin \left(90^{\circ}\right) \\
& =\mathrm{NiAB}=\mathrm{NiS} \mathrm{~B} \\
\Rightarrow \quad & \mathrm{~B}=\frac{\tau}{\mathrm{NiS}}
\end{aligned}
$$

6. Dimension of solar constant is :
(1) $\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}$
(2) $M^{1} L^{1} T^{-3}$
(3) $M^{0} L^{0} T^{3}$
(4) $M^{1} L^{2} T^{-3}$

Ans. (1)
Sol. Solar constant $=\frac{\text { Energy }}{\text { Time Area }}$
$=\frac{\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}}{\mathrm{TL}^{2}}=\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{-3}$
7. A body cools from $50^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in 5 minutes in surrounding temperature $20^{\circ} \mathrm{C}$. Find temperature of body in next 5 minutes.
(1) $13.3^{\circ} \mathrm{C}$
(2) $23.3^{\circ} \mathrm{C}$
(3) $43.3^{\circ} \mathrm{C}$
(4) $33.3^{\circ} \mathrm{C}$

Ans. (4)
Sol. Using Newton's Law of cooling
$\frac{50-40}{5 \mathrm{Min}}=\mathrm{K}\left(\frac{50+40}{2}-2\right)$
Next 5 Min.
$\frac{40-\theta}{5}=K\left(\frac{40+\theta}{2}-20\right)$
Dividing(ii)/(i)
$\frac{40-\theta}{10}=\frac{40+\theta-40}{50+40-40}=\frac{\theta}{50}$
$40-\theta=\frac{\theta}{5}$
$200-5 \theta=\hat{\theta}$
$\therefore \theta=\frac{200}{6}=33.3^{\circ} \mathrm{C}$
8. In the given diagram resistance of voltmeter is $10 \mathrm{k} \Omega$. Find reading of the voltmeter.

(1) 4 v
(2) 3.23 v
(3) 1.95 v
(4) 1.26 v

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in

Ans. (3)

Let voltmeter reading is v

$$
\begin{gathered}
\frac{\mathrm{v}}{400} \times 400+\left(\frac{\mathrm{v}}{10000}+\frac{\mathrm{v}}{400}\right) 800=6 \\
\Rightarrow \quad \mathrm{v}+\frac{8 \mathrm{v}}{100}+2 \mathrm{v}=6 \\
\frac{77 \mathrm{v}}{25}=6 \\
\mathrm{v}=\frac{150}{77}=1.95 \mathrm{v}
\end{gathered}
$$

9. A square wire loop of side 30 cm \& wire cross section having diameter 4 mm is placed perpendicular to a magnetic field changing at the rate $0.2 \mathrm{~T} / \mathrm{s}$. Find induced current in the wire loop.
(Given: Resistivity of wire material is $1.23 \times 10^{-8} \Omega \mathrm{~m}$)
(1) $5.34 \times 10^{2} \mathrm{~A}$
(2) 15.3 A
(3) $7.34 \times 10^{2} \mathrm{~A}$
(4) $1.34 \times 10^{2} \mathrm{~A}$

Ans. (2)

Sol.

Radius of cross section of wire $=\frac{\mathrm{d}}{2}=2 \mathrm{~mm}=2 \times 10^{-3} \mathrm{~m}$
$\frac{\mathrm{dB}}{\mathrm{dt}}=0.2 \frac{\mathrm{~T}}{\mathrm{~s}}$
$\mathrm{R}=\frac{\rho l}{\mathrm{a}}=\frac{\left(1.23 \times 10^{-8}\right)(4 \times 0.3)}{\pi \times\left(2 \times 10^{-3}\right)^{2}}=0.1175 \times 10^{-2}$
$\phi=\mathrm{BA}=\mathrm{B}(0.3)^{2}$
$|\in|=\frac{\mathrm{d} \phi}{\mathrm{dt}}=(0.3)^{2} \frac{\mathrm{~dB}}{\mathrm{dt}}=0.018$
$\mathrm{i}=\frac{\epsilon}{\mathrm{R}}=\frac{0.018}{0.1175 \times 10^{-2}}=15.3 \mathrm{~A}$
10. Electric field of an electromagnetic wave is $\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \cos (\omega \mathrm{t}-\mathrm{kx}) \hat{\mathrm{j}}$. The equation of corresponding magnetic field at $\mathrm{t}=0$ should be :
(1) $\overrightarrow{\mathrm{B}}=\mathrm{E}_{0} \sqrt{\mu_{0} \in_{0}} \cos \mathrm{kx} \hat{\mathrm{k}}$
(3) $\overrightarrow{\mathrm{B}}=\mathrm{E}_{0} \sqrt{\mu_{0} \in_{0}} \cos \mathrm{kx}(-\hat{\mathrm{k}})$
(1)

Sol. $\quad B_{0}=\frac{E_{0}}{C} \neq \frac{E_{0}}{1 / \sqrt{\mu_{0} \epsilon_{0}}}=E_{0} \sqrt{\mu_{0} \in_{0}}$
As the light is propagating in x direction
\& $\quad \hat{\mathrm{E}} \times \hat{\mathrm{B}} \| \hat{\mathrm{C}}$
$\therefore \quad \overrightarrow{\mathrm{B}}$ should be in $\hat{\mathrm{k}}$ direction
$\therefore \quad \overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \cos (\omega \mathrm{t}-\mathrm{kx}) \hat{\mathrm{k}}$
At $t=0, \quad \vec{B}=B_{0}$ coskx

PHYSICS
11. In the given figure, there are two concentric spherical shells, find potential difference between the spheres

(1) $\frac{3}{8 \pi \epsilon_{0}} \cdot \frac{Q_{1}}{R}$
(2) $\frac{3}{16 \pi \epsilon_{0}} \cdot \frac{Q_{2}}{R}$
(3) $\frac{3}{4 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}_{1}}{\mathrm{R}}$
(4) $\frac{3}{16 \pi \epsilon_{0}} \cdot \frac{Q_{1}}{R}$

Ans. (4)
Sol. $\quad V_{\text {inner }}=\frac{K Q_{1}}{R}+\frac{K Q_{2}}{4 R}$
$V_{\text {outer }}=\frac{K Q_{1}}{4 R}+\frac{K Q_{2}}{4 R}$
Potential difference

$$
\begin{aligned}
\Delta \mathrm{V} & =\mathrm{V}_{\text {inner }}-\mathrm{V}_{\text {outer }} \\
& =\frac{3}{4} \cdot \frac{\mathrm{KQ}_{1}}{\mathrm{R}}=\frac{3}{16 \pi \epsilon_{0}} \cdot \frac{\mathrm{Q}_{1}}{\mathrm{R}}
\end{aligned}
$$

12. A rod is rotating with constant angular velocity ω about axis $A B$. Find $\cos \theta$

(1) $\frac{g}{2 \ell \omega^{2}}$
(2) $\frac{g}{\ell \omega^{2}}$
(3) $\frac{2 g}{\ell \omega^{2}}$
(4) $\frac{3 \mathrm{~g}}{2 \ell \omega^{2}}$

Ans. (4)

Sol. Torque of centrifugal force $\tau_{\mathrm{cf}}=\mathrm{dm} \cdot \mathrm{x} \sin \theta \omega^{2} \mathrm{x} \cos \theta=\frac{\mathrm{m}}{\ell} \omega^{2} \sin \theta \cos \theta \int_{0}^{\ell} \mathrm{x}^{2} \mathrm{dx}$
$\tau_{\text {ef }}=\frac{\mathrm{m} \ell^{2} \omega^{2} \sin \theta \cos \theta}{3}$
$\tau_{\mathrm{mg}}=\tau_{\mathrm{cf}}$
$\mathrm{mg} \cdot \frac{\ell}{2} \sin \theta=\frac{\mathrm{m} \ell^{2} \omega^{2} \sin \theta \cos \theta}{3}$
$\cos \theta=\frac{3 \mathrm{~g}}{2 \ell \omega^{2}}$
13. Mass density of a sphere having radius R varies as $\rho=\rho_{0}\left(1-\frac{r^{2}}{R^{2}}\right)$. Find maximum magnitude of gravitational field.

(1) $\frac{4}{3} \pi G \rho_{0} R$
(2) $\frac{2 \sqrt{3}}{5} \pi G \rho_{0} R$
(3) $\frac{8 \sqrt{5}}{27} \pi G \rho_{0} R$
(4) $\frac{2 \sqrt{5}}{27} \pi G \rho_{0} \mathrm{R}$

Ans. (3)

Sol.

MATRIX

$d m=\rho \times 4 \pi x^{2} d x$
$=\rho_{0}\left(1-\frac{x^{2}}{R^{2}}\right) \times 4 \pi x^{2} d x$
gravitational field due to small element, $\mathrm{dE}=\frac{\mathrm{Gdm}}{\mathrm{r}^{2}}$
$\mathrm{E}=\int_{0}^{\mathrm{r}} \frac{\mathrm{G} \rho_{0}\left(1-\frac{\mathrm{x}^{2}}{\mathrm{R}^{2}}\right) 4 \pi \mathrm{x}^{2} \mathrm{dx}}{\mathrm{r}^{2}}$
$E=\frac{G \rho_{0} 4 \pi}{r^{2}} \int_{0}^{r}\left(x^{2}-\frac{x^{4}}{R^{2}}\right) d x$
$=\frac{G \rho_{0} 4 \pi}{\mathrm{r}^{2}}\left[\frac{\mathrm{r}^{3}}{3}-\frac{\mathrm{r}^{5}}{5 \mathrm{R}^{2}}\right]$
$=\mathrm{G} \rho_{0} 4 \pi\left[\frac{\mathrm{r}}{3}-\frac{\mathrm{r}^{3}}{5 \mathrm{R}^{2}}\right]$
E is maximum when $\frac{\mathrm{dE}}{\mathrm{dr}}=0 \Rightarrow \frac{\mathrm{dE}}{\mathrm{dr}}=4 \pi \mathrm{G}_{0}\left(\frac{1}{3}-\frac{3 \mathrm{r}^{2}}{5 \mathrm{R}^{2}}\right)=0$
$\Rightarrow \frac{3 r^{2}}{5 R^{2}}=\frac{1}{3} \Rightarrow r^{2}=\frac{5 R^{2}}{9} \Rightarrow r=\frac{\sqrt{5}}{3} R$
$\mathrm{E}_{\max }=4 \pi \mathrm{G} \rho_{0} \times \frac{\sqrt{5} \mathrm{R}}{3}\left[\frac{1}{3}-\frac{1}{5} \times \frac{5}{9}\right]$
$\mathrm{E}_{\max }=\frac{8 \sqrt{5}}{27} \pi \mathrm{G} \rho_{0} . \mathrm{R}$
14. An object is placed at principle axis of a spherical mirror at a distance of 30 cm from mirror. Spherical mirror forms its real image at a distance of 10 cm from mirror. If object start moving with velocity $9 \mathrm{~cm} / \mathrm{sec}$. Find initial velocity of image.
(1) $-9 \mathrm{~cm} / \mathrm{sec}$
(2) $-4 \mathrm{~cm} / \mathrm{sec}$
(3) $-1 \mathrm{~cm} / \mathrm{sec}$
(4) $-3 \mathrm{~cm} / \mathrm{sec}$

Ans. (3)

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in

Sol. $\quad v_{i}=-\frac{v^{2}}{u^{2}} v_{0}$
$=-\left(\frac{10}{30}\right)^{2}(9)$
$=-1 \mathrm{~cm} / \mathrm{sec}$
15. Constant power P is supplied to a particle havign mass m, initially at rest. Choose correct graph.
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

$$
\text { P. } \mathrm{t}=\frac{1}{2} \mathrm{mv} \stackrel{2}{\Rightarrow} \Rightarrow \mathrm{v}=\left(\sqrt{\frac{2 \mathrm{P}}{\mathrm{~m}}}\right) \mathrm{t}^{\mathrm{t}}
$$

$\mathrm{s}=\int_{0}^{\mathrm{t}} \mathrm{vdt}=\sqrt{\frac{2 \mathrm{P}}{\mathrm{m}}} \int_{0}^{\mathrm{t}} \mathrm{t}^{1 / 2} \mathrm{dt}$

$$
=\sqrt{\frac{2 \mathrm{P}}{\mathrm{~m}}} \cdot \frac{\mathrm{t}^{3 / 2}}{3 / 2}
$$

$\mathrm{s}=\sqrt{\frac{8 \mathrm{P}}{9 \mathrm{~m}}} \cdot \mathrm{t}^{3 / 2}$
16. Two points sources radiates having same power of 200 W . One source is emitting photons of $\lambda_{1}=500 \mathrm{~nm}$ and other emitting X-ray photons of $\lambda_{2}=1 \mathrm{~nm}$. Find ratio of photon density from both the sources?
(1) 200
(2) 500
(3) 250
(4) 0.4

Ans. (2)
Sol. $\quad \mathrm{P}_{\mathrm{S}}-$ Power of sources
$\mathrm{P}_{\mathrm{S}}=\mathrm{n} \frac{\mathrm{hc}}{\lambda} ; \mathrm{n}=$ no. of photons emitted $/ \mathrm{s}$
$\Rightarrow \quad \mathrm{n} \propto \lambda \Rightarrow \quad \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\lambda_{1}}{\lambda 2}=500$
17. In the given diagram a diamagnetic sphare has a small cavity at its centre and now paramagnetic material is inserted in the cavity. The sphere is kept in a external magnetic field B then net magnetic field at the centre of sphere will be :-

(1) 0
(2) B
(3) $\mathrm{B}_{0}>\mathrm{B}$
(4) $\mathrm{B}_{0}<\mathrm{B}$

Ans. (1)
Sol. When magnetic field is applied diamagnetic substance produces magnetic field in opposite direction so net magnetic field will be zero.
18. A p -n junction becomes active as photons of wavelength ; $\lambda=400 \mathrm{~nm}$ falls on it. Find the energy band gap?
(1) 3.1 eV
(2) 4.51 eV
(3) 2.45 eV
(4) 5.34 eV

Ans. (1)
Sol. $\lambda=400 \mathrm{~nm}$

Band gap $\mathrm{E}_{\mathrm{g}}=\frac{\mathrm{hc}}{\lambda}=\frac{1240}{400} \approx 3.1 \mathrm{eV}$
19. Two light rays having the same wavelength λ in vacuum are in phase initially. Then the first ray travels a path L_{1} through a medium of refractive index n_{1} while the second ray travels a path of length L_{2} through a medium of refractive index n_{2}. The two waves are then combined to produce interference. The phase difference between the two waves at the point of interference is :
(1) $\frac{2 \pi}{\lambda}\left(\mathrm{~L}_{2}-\mathrm{L}_{1}\right)$
(2) $\frac{2 \pi}{\lambda}\left(n_{1} L_{1}-n_{2} L_{2}\right)$
(3) $\frac{2 \pi}{\lambda}\left(n_{2} L_{1}-n_{1} L_{2}\right)$
(4) $\frac{2 \pi}{\lambda}\left(\frac{L_{1}}{n_{1}}-\frac{L_{2}}{n_{2}}\right)$

Ans. (2)
Sol. Here, optical path for first ray $=n_{1} L_{1}$
Optical path for second ray $=\mathrm{n}_{2} \mathrm{~L}_{2}$
Path difference $=n_{1} L_{1}-n_{2} L_{2}$
Now, phase difference

$$
=\frac{2 \pi}{\lambda} \times \text { path difference }
$$

$$
=\frac{2 \pi}{\lambda} \times\left(n_{1} \mathrm{~L}_{1}-\mathrm{n}_{2} \mathrm{~L}_{2}\right)
$$

20. In the diagram three point masses ' m ' each are fixed at the corners of an equilateral triangle. Moment of inertia of the system about y -axis is $\frac{\mathrm{N}}{20} \mathrm{ma}^{2}, \mathrm{~N}$ is :

(1) 25
(2) 50
(3) 75
(4) 100

Ans. (1)
Sol. $\quad \mathrm{I}=\mathrm{m} \times \mathrm{O}^{2}+\mathrm{ma}^{2}+\mathrm{m}\left(\frac{\mathrm{a}}{2}\right)^{2}$
$=\frac{5}{4} \mathrm{ma}^{2}=\frac{25}{20} \mathrm{ma}^{2}$
$\mathrm{N}=25$

