JEE MAIN SEP 2020 (MEMORY BASED) | $\mathbf{2}^{\text {ND }}$ SEP SHIFT-2

Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. A rod is heated from $0^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$. If its length changes by 0.02%, than by what will be change in mass density?
(1) 0.02
(2) 0.04
(3) 0.06
(4) 0.08

Ans (3)
Sol. $\frac{\Delta \mathrm{L}}{\mathrm{L}} \times 100=0.02$ and $\Delta \mathrm{T}=10^{\circ} \mathrm{C}$
$\frac{\Delta \mathrm{L}}{\mathrm{L}}=2 \times 10^{-4}=\alpha \Delta \mathrm{T}$
$\alpha=2 \times 10^{-5}$
$\gamma=3 \alpha=6 \times 10^{-5}$
$\rho=\frac{\mathrm{m}}{\mathrm{v}}$
$\frac{\Delta \rho}{\rho}=\frac{-\Delta \mathrm{v}}{\mathrm{v}}=-\gamma \Delta \mathrm{T}=-6 \times 10^{-5} \times 10$
$\frac{\Delta \rho}{\rho} \times 100=-6 \times 10^{-2}$
2.

Magnetic moment of the loop:
(1) $\operatorname{iab}(\hat{i}+\hat{j})$
(2) $\operatorname{iab}(-\hat{i}-\hat{j})$
(3) $\operatorname{iab}(\hat{\mathrm{i}}+\hat{\mathrm{k}})$
(4) $\operatorname{iab}(\hat{i}+\hat{j})$

Ans (2)

Sol.

Add a wire AD in which we will assume current i is flowing in both directions. Now, this loop can be considered as a combination of 2 loops i.e. ABCD \& DEFA

$$
\begin{aligned}
& \overline{\mathrm{m}}_{\mathrm{ABCD}}=i \mathrm{ab}(-\hat{\mathrm{j}}) \\
& \overline{\mathrm{m}}_{\mathrm{DEFA}}=i \mathrm{ab}(-\hat{\mathrm{i}}) \\
& \overline{\mathrm{m}}_{\text {total }}=i \mathrm{ab}(-\hat{\mathrm{i}}-\mathrm{j})
\end{aligned}
$$

3. If area (A), time (T) and momentum (P) is assume as fundamental quantities, then dimensional formula of energy will be :
(1) $\mathrm{AT}^{-2} \mathrm{P}^{1}$
(2) $A^{1 / 2} T^{-1} P^{2}$
(3) $\mathrm{A}^{1 / 2} \mathrm{~T}^{-1} \mathrm{P}^{1}$
(4) $\mathrm{AT}^{-1 / 2} \mathrm{P}^{2}$

Ans (3)
Sol. $E=A^{x} T^{y} P^{z}$
$\mathrm{ML}^{2} \mathrm{~T}^{-2}=\left(\mathrm{L}^{2}\right)^{\times}(\mathrm{T})^{y}\left(\mathrm{MLT}^{-1}\right)^{z}$
(i) $\mathrm{z}=1$
(ii) $2 \mathrm{x}+\mathrm{z}=2$
(iii) $\mathrm{y}-\mathrm{z}=-2$

From equation (i), (ii) \& (iii)
$\mathrm{x}=1 / 2, \mathrm{y}=-1, \mathrm{z}=1$
$\mathrm{E}=\mathrm{A}^{1 / 2} \mathrm{~T}^{-1} \mathrm{P}^{1}$
4. $\quad \vec{E} \& \vec{B}$ in an electromagnetic wave oscillate along the direction having unit vectors $\hat{k} \& \frac{\hat{i}-\hat{j}}{\sqrt{2}}$. Find unit vector along direction of propagation :
(1) $\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}}$
(2) $\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}$
(3) $\frac{\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{2}}$
(4) $\frac{\hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{2}}$

Ans (1)

Sol. $\hat{\mathrm{E}}=\hat{\mathrm{k}}$

$$
\begin{aligned}
& \hat{B}=\frac{\hat{i}-\hat{j}}{\sqrt{2}} \\
& \hat{V}=\hat{\mathrm{E}} \times \hat{\mathrm{B}} \\
& =\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}
\end{aligned}
$$

5. Charge Q is distributed on two concentric spheres of radius r and R respectively. If charge density of both spheres is same then electric potential at the centre will be :
(1) $\mathrm{KQ}\left(\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{R}}\right)$
(2) $\frac{K Q(r+R)}{\left(r^{2}+R^{2}\right)}$
(3) $\frac{\mathrm{KQrR}}{r+\mathrm{R}}$
(4) $\frac{K Q\left(R^{2}+r^{2}\right)}{(\mathrm{R}+\mathrm{r})}$

Ans (2)

Sol.

(i) $\mathrm{q}_{1}+\mathrm{q}_{2}=\mathrm{Q}$
$\frac{\mathrm{q}_{1}}{4 \pi \mathrm{r}^{2}}=\frac{\mathrm{q}_{2}}{4 \pi \mathrm{R}^{\mathrm{k}^{2}}}$
(ii) $\frac{\mathrm{q}_{1}}{\mathrm{q}_{2}}=\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}$

From (i) \& (ii)
$\mathrm{q}_{1}=\frac{\mathrm{Q} \times \mathrm{r}^{2}}{\mathrm{R}^{2}+\mathrm{r}^{2}}, \mathrm{q}_{2}=\frac{\mathrm{QR}^{2}}{\mathrm{R}^{2}+\mathrm{r}^{2}}$
$V_{0}=\frac{\mathrm{kq}_{1}}{\mathrm{r}}+\frac{\mathrm{kq}_{2}}{\mathrm{R}}$
Putting values of q_{1} and q_{2}
$\mathrm{V}_{0}=\frac{\mathrm{kQ}(\mathrm{r}+\mathrm{R})}{\mathrm{R}^{2}+\mathrm{r}^{2}}$

PHYSICS
6. A capillary of radius 0.15 mm is dipped in liquid of density $\rho=667 \mathrm{~kg} / \mathrm{m}^{3}$. If surface tension of liquid is $\frac{1}{20} \mathrm{Nm}^{-1}$ then find the height upto which liquid rises in capilary. Angle of contact between liquid and capillary tube is $60^{\circ} .\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) 0.01 m
(2) 0.02 m
(3) 0.04 m
(4) 0.0 m

Ans (4)
Sol. $\mathrm{h}=\frac{2 \mathrm{~s} \cos \theta}{\rho \mathrm{gr}}=\frac{2 \times \frac{1}{20} \times \cos 60^{\circ}}{667 \times 10 \times 15 \times 10^{-5}}=0.05 \mathrm{~m}$
7. In given potentiometer circuit 1.02 volt is balanced at 51 cm from A. Find potential gradient of potentiometer wire AB :

(1) 0.01 yolt $/ \mathrm{cm}$
(2) $0.02 \mathrm{volt} / \mathrm{cm}$
(3) $0.03 \mathrm{volt} / \mathrm{cm}$
(4) $0.04 \mathrm{volt} / \mathrm{cm}$

Ans (2)
Sol. Potential gradient $=\frac{\mathrm{dv}}{\mathrm{dx}}=\frac{1.02 \mathrm{~V}}{51 \mathrm{~cm}} \Rightarrow 0.02 \mathrm{v} / \mathrm{cm}$
8. In hydrogen atom electron jumps from $(\mathrm{n}+1)^{\text {th }}$ state to $\mathrm{n}^{\text {th }}$ state. The frequency of emitted photon is directly proportional to ($\mathrm{n} \gg 1$)
(A) n
(B) $\frac{1}{\mathrm{n}}$
(C) $\frac{1}{\mathrm{n}^{2}}$
(D) $\frac{1}{\mathrm{n}^{3}}$

Ans (D)
Sol. $\mathrm{h} v=(13.6 \mathrm{eV})\left(\frac{1}{(\mathrm{n}-1)^{2}}-\frac{1}{\mathrm{n}^{2}}\right)$
$\mathrm{h} \boldsymbol{\nu}=(13.6 \mathrm{eV})\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{(\mathrm{n}+1)^{2}}\right)$
$=(13.6 \mathrm{eV})\left(\frac{2 \mathrm{n}+1}{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}\right)$

$$
=(13.6 \mathrm{eV})\left(\frac{2+\frac{1}{\mathrm{n}}}{\mathrm{n}^{3}\left(1+\frac{1}{\mathrm{n}}\right)^{2}}\right)
$$

$\mathrm{n} \gg 1$
$\mathrm{h} v=(13.6 \mathrm{eV}) \frac{2}{\mathrm{n}^{3}}$
$v \propto \frac{1}{\mathrm{n}^{3}}$
9. Displacement time graph of particle performing SHM is as shown in figure. Assume that mean position is at $\mathrm{x}=0$

(1) No force is acting on the particle at $\frac{T}{4}$
(2) Speed of particle is maximum at $\frac{3 T}{4}$
(3) acceleration is maximum at $\frac{T}{4}$
(4) KE and PE is equal at $\mathrm{t}=\frac{\mathrm{T}}{8}$
(A) $1 \& 3$
(B) A, C, D
(C) A, B, D
(D) C, D

Ans (C)
Sol. As seen from graph, equation of SHM will be given by
$\mathrm{x}=\mathrm{A} \cos (\omega \mathrm{t})$
At time $\frac{T}{4} \& \frac{3 T}{4}$ particle is at mean position.
this means,
$\mathrm{F}=-\mathrm{kx}=0$
$\mathrm{a}=-\omega^{2} \mathrm{x}=0$
$v=\omega \sqrt{A^{2}-x^{2}}=\omega A=\max$ imum
At $t=\frac{T}{8}, \quad x=A \cos \left(\omega \times \frac{T}{8}\right)$
$=A \cos \left(\frac{2 \pi}{T} \times \frac{T}{8}\right)=\frac{A}{\sqrt{2}}$
$\mathrm{v}=\frac{1}{2} \mathrm{kx}^{2}=\frac{1}{4}\left(\mathrm{~m} \omega^{2}\right) \mathrm{A}^{2}$
$\mathrm{k}=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{~m} \omega^{2}\left(\mathrm{~A}^{2}-\frac{\mathrm{A}^{2}}{2}\right)=\frac{1}{4} \mathrm{~m} \omega^{2} \mathrm{~A}^{2}$
$\mathrm{U}=\mathrm{k}$
10. A closed box contains an ideal gas. If temperature of gas is increased then which of the following is correct :
(1) Mean free path remain same
(2) mean free path decreases
(3) Relaxation time decreases
(4) Relaxation time remain same.
(A) $2 \& 4$
(B) $1 \& 3$
(C) $1 \& 4$
(D) $2 \& 3$

Ans (B)
S. \quad Mean free path $=1=\frac{1}{\sqrt{2}\left(\frac{N}{V}\right) \pi \mathrm{d}^{2}}$
here $\mathrm{N}=$ no of molecule, $\mathrm{d} \Rightarrow$ diameter of molecule
$V \Rightarrow$ Vol. of container.
$\mathrm{N}, \mathrm{V}, \mathrm{d}$ is remain same so mean free path remain same due to increase in temperature, no of collision increase so relaxation time decrease.
11. $R_{1}=R_{2}=R_{3}=R_{4}=2 \Omega$. Find voltage across capacitor at steady state

(A) 0 V
(B) 2 V
(C) 4 V
(D) 8 V

Ans (D)
S. In steady state

$$
\begin{array}{ll}
\text { from } \mathrm{KVL} \Rightarrow & -2\left(\mathrm{I}-\mathrm{I}_{0}\right)-2 \mathrm{I}+10=0 \\
& 2 \mathrm{I}-\mathrm{I}_{0}= \\
& -2 \mathrm{I}_{0}-2 \mathrm{I}_{0}+2\left(\mathrm{I}-\mathrm{I}_{0}\right)=0 \\
\text { from }(1) \&(2) & \mathrm{I}=3 \mathrm{I}_{0} \\
& \mathrm{I}_{0}=1 \mathrm{~A}, \mathrm{I}=3 \mathrm{~A} \tag{2}\\
& \mathrm{~V}_{\mathrm{AB}}=2 \mathrm{I}_{0}+2 \mathrm{I} \\
& =2 \times 1+2 \times 3=8 \mathrm{~V}
\end{array}
$$

12. Two disc having moment of inertia $I_{1}=0.1 \mathrm{~kg}-\mathrm{m}^{2}$ and $\mathrm{I}_{2}=0.2 \mathrm{~kg}-\mathrm{m}^{2}$ and angluar velocity $\omega_{1}=10 \mathrm{rad} / \mathrm{sec}$ $\& \omega_{2}=5 \mathrm{rad} / \mathrm{sec}$ are placed over each other coaxially. Find total kinetic energy when they rotate with same angular velocity.
(A) 0 J
(B) 5 J
(C) 10 J
(D) $\frac{20}{3} \mathrm{~J}$

Ans (D)
Sol. Using angular momentum conservation

$$
\begin{aligned}
& \mathrm{I}_{1} \omega_{1}+\mathrm{I}_{2} \omega_{2}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega \\
& \mathrm{w}=\frac{\mathrm{I}_{1} \omega_{1}+\mathrm{I}_{2} \omega_{2}}{\mathrm{I}_{1}+\mathrm{I}_{2}}=\frac{0.1 \times 10+0.2 \times 5}{0.1+0.2}=\frac{20}{3}
\end{aligned}
$$

Final K.E. $=\frac{1}{2} I_{1} \omega^{2}+\frac{1}{2} I_{2} \omega^{2}$
$=\frac{\omega^{2}}{2}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=\left(\frac{20}{3}\right)^{2} \times \frac{1}{2} \times(0.3)=\frac{20}{3} \mathrm{~J}$
13. A particle having mass m \& charge $+q$ is projected horizontally from point O. Choose the correct graph for equation of trajectory -

(A)

(B)

(C)

(D)

Ans (C)

Sol.
 and

so path of particle is parabola

14. In YDSE, when $\lambda=700 \mathrm{~nm}$ then total number of fringes between $\mathrm{O} \& \mathrm{P}$ is 16 . When $\lambda=400 \mathrm{~nm}$ then total number of fringes between $\mathrm{O} \& \mathrm{P}$ is

(A) 14
(B) 28
(C) 7
(D) 12

Ans (B)
S. for $\lambda=700 \mathrm{~nm} \quad \mathrm{y}=\frac{(16) \mathrm{D}(700)}{\mathrm{d}}$
for $\lambda=400 \mathrm{~nm} \quad y=\frac{\mathrm{nD}(400)}{\mathrm{d}}$
form (1) \& (2) $\Rightarrow \mathrm{n}=\frac{700 \times 16}{400}=28$
15. Acceleration due to gravity is same at height h from surface and at depth h from the surface, then find the value of h.
(A) $(\sqrt{5}-1) \frac{\mathrm{R}}{2}$
(B) $\frac{\sqrt{5 \mathrm{R}}}{2}-1$
(C) $\frac{\mathrm{R}}{\sqrt{2}}$
(D) $\frac{\sqrt{5 R}+R}{2}$

Ans (A)
S. $\quad \Rightarrow \frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})^{2}}=\frac{\mathrm{GM}}{\mathrm{R}^{3}}$
$\Rightarrow \mathrm{R}^{3}=(\mathrm{R}+\mathrm{h})^{2}(\mathrm{R}-\mathrm{h})$
$\Rightarrow \mathrm{R}^{3}=\mathrm{R}^{3}-\mathrm{h}^{3}-\mathrm{h}^{2} \mathrm{R}+\mathrm{hR}^{2}$
$\Rightarrow \mathrm{h}^{3}+\mathrm{h}^{2} \mathrm{R}-\mathrm{hR}^{2}=0$
$h\left(h^{2}+h R-R^{2}\right)=0$
$\mathrm{h}=0, \frac{-\mathrm{R} \pm \sqrt{5} \mathrm{R}}{2}$
$h=\frac{-\mathrm{R}+\sqrt{5} \mathrm{R}}{2}$
16. Efficiency of cyclic process is 50%. If heat $Q_{1}=1915 \mathrm{~J}, \mathrm{Q}_{2}=-40 \mathrm{~J}, \mathrm{Q}_{3}=125 \mathrm{~J}$, then Q_{4} is unknown then find the value of Q_{4}.
(1) 1080 J
(2) -980 J
(3) -1080 J
(4) -1280 J

Sol. $\quad \mu=\frac{W}{\sum Q_{+}}=\frac{Q_{t}+Q_{2}+Q_{3}+Q_{4}}{Q_{1}+Q_{3}}=0.5$

$$
\begin{aligned}
& \Rightarrow \frac{1915-40+125+\mathrm{Q}_{4}}{1915+125}=0.5 \\
& \Rightarrow 1915-40+125+\mathrm{Q}_{4}=1020 \\
& \Rightarrow \mathrm{Q}_{4}-1020-2000 \\
& \Rightarrow \mathrm{Q}_{4}=-980 \mathrm{~J}
\end{aligned}
$$

17. Impedance of $L-R$ Circuit is 100Ω and phase difference between source voltage and source current is 45°. If frequency of source 1000 Hz then inductance of coil will be.
(1) $25 \sqrt{2} \mathrm{mH}$
(2) $\frac{50 \sqrt{2}}{\pi} \mathrm{mH}$
(3) $\frac{25 \sqrt{2}}{\pi} \mathrm{mH}$
(4) $\frac{20 \sqrt{2}}{\pi} \mathrm{mH}$

Ans (3)
S. $\quad \tan 45^{\circ}=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}} \Rightarrow \mathrm{X}_{\mathrm{L}}=\mathrm{R}$
$\mathrm{Z}=\sqrt{\mathrm{X}_{\mathrm{L}}{ }^{2}+\mathrm{R}^{2}}=100$
from (1)
$\sqrt{2} \mathrm{R}=100$
$\mathrm{R}=50 \sqrt{2}=\mathrm{X}_{\mathrm{L}}$
$\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}=50 \sqrt{2} \quad\left[\frac{2 \pi}{\omega}=\frac{1}{\mathrm{f}}=\frac{1}{1000}\right]$
$\mathrm{L}=\frac{50 \sqrt{2}}{2 \pi \times 1000}=\frac{25 \sqrt{2}}{\pi} \mathrm{mH}$
18. A square of side $\frac{a}{2}$ is removed from a disc having radius a. Find centre of mass of remaining portion.

(1) $X=\frac{-2 a}{\pi}$
(2) $\frac{-a}{8 \pi-2}$
(3) $\frac{-4 a}{3 \pi}$
(4) $\frac{-\mathrm{a}}{3 \pi-4}$

Ans (2)
S. $\quad \mathrm{X}=\frac{\mathrm{M}_{\text {complete }} X_{\text {complete }}-M_{\text {removed }} X_{\text {removed }}}{M_{\text {complete }}-M_{\text {removed }}}$

$$
=\frac{\left(\sigma \pi \mathrm{a}^{2}\right)(0)-\left(\sigma \frac{\mathrm{a}^{2}}{4}\right) \times \frac{\mathrm{a}}{2}}{\sigma\left(\pi \mathrm{a}^{2}\right)-\left(\sigma \frac{\mathrm{a}^{2}}{4}\right)}
$$

$$
=\frac{-\mathrm{a}^{3} / 8}{(\pi-1 / 4)}=\frac{-\mathrm{a}}{8 \pi-2}
$$

19. A particle is projected with velocity v from point O . Particle complete 10 revolutions before coming out from magnetic region. Then find ℓ.

(1) $\frac{\pi m v}{q B}$
(2) $\frac{2 \pi m v}{q B}$
(3) $\frac{10 \pi \mathrm{mv}}{\mathrm{qB}}$
(4) $\frac{40 \pi m v}{q B}$

Ans (3)
Sol. $\quad \ell=10($ pitch $)$

$\ell=\frac{10 \pi \mathrm{mv}}{\mathrm{qB}}$
20. Young modulus of a string of length 1 m and density $900 \mathrm{~kg} / \mathrm{m}^{3}$ is $9 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. Find minimum resonance frequency (in Hz) can be produced in the string if strain in the string is 4.9×10^{-4}.

Ans $\mathbf{3 5 ~ H z}$
Sol. $\mathrm{f}=\frac{1}{2 \ell} \sqrt{\frac{\mathrm{~T}}{\mu}}$ and $\mu=\rho \mathrm{A}, \mathrm{Y}=\frac{\mathrm{T} / \mathrm{A}}{\Delta \ell / \ell} \Rightarrow \frac{\mathrm{T}}{\mathrm{A}}=\frac{\mathrm{Y} \Delta \ell}{\ell}$
So $\mathrm{f}=\frac{1}{2 \ell} \frac{\sqrt{\mathrm{Y} \Delta \ell}}{\rho \ell}$

$$
\begin{aligned}
& =\frac{1}{2 \times 1} \sqrt{\frac{9 \times 10^{9} \times 4.9 \times 10^{-4}}{100}} \\
& =\frac{70}{2}=35 \mathrm{~Hz}
\end{aligned}
$$

21. Light incident on a sphere of refractive index $\sqrt{3}$ placed in a air as shown in figure. Find the angle (θ) in degree between emergent ray and reflected ray.

Ans

$$
\theta=90^{\circ}
$$

Sol.

Apply Snell's law at A
$1 \sin 60^{\circ}=\sqrt{3} \sin r$

$$
\mathrm{r}=30^{\circ}
$$

In $\triangle \mathrm{ABC} \quad \mathrm{AC}=\mathrm{BC} \quad$ So $\mathrm{r}=\mathrm{r}^{\prime}=30^{\circ}$
Again apply snell's law on B
$\sqrt{3} \sin \mathrm{r}^{\prime}=1 \sin \mathrm{e}$
$\mathrm{e}=60^{\circ}$
from geometry $\mathrm{r}^{\prime}+\theta+\mathrm{e}=180^{\circ}$
$\theta=90^{\circ}$
22. A capacitor of capacity $20 \mu \mathrm{~F}$ is charged up to 50 V and disconnected from cell. Now this charged capacitor is connected to another capacitor of capacitance C . If final common potential is 20 V then find the capacitance C in $\mu \mathrm{F}$.

Ans 30
S. Common potential $=20=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}+\mathrm{C}_{2}}$

$$
\begin{aligned}
& 20=\frac{20 \times 50+\mathrm{C} \times 0}{20+\mathrm{C}} \\
& 400+20 \mathrm{C}=1000 \\
& \mathrm{C}=30 \mu \mathrm{~F}
\end{aligned}
$$

