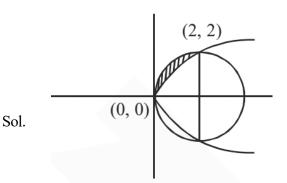


Matrix JEE Academy

JEE (MAIN) 2016

(2) contains more than two elements


(4) contains exactly one element

1

PART-B - MATHS

The area (in sq. units) of the region $\{(x, y\} : y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$ is : 31.

(1)
$$\pi - \frac{4\sqrt{2}}{3}$$
 (2) $\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$ (3) $\pi - \frac{4}{3}$ (4) $\pi - \frac{8}{3}$

Area =
$$\frac{1}{4}$$
 (Area of circle) $-\int_{0}^{2} \sqrt{2x} dx$

$$=\pi-\frac{8}{3}$$

32. If
$$f(x) + 2f\left(\frac{1}{x}\right) = 3x$$
, $x \neq 0$ and $S = \{x \in R : f(x) = f(-x)\}$; then S:

(1) contains exactly two elements

(3) is an empty set

Sol.
$$f(x) + 2f(1/x) = 3x$$
 (1)
 $f(1/x) + 2f(x) = \frac{3}{x}$ (2)
From (1) & (2)
 $f(x) = \frac{2 - x^2}{x}$
 $f(x) = f(-x)$
 $x^2 = 2$
 $x = \pm \sqrt{2}$

S contains exactly two elements

33. The integral
$$\int \frac{2x^{12} + 5x^9}{(x^5 + x^3 + 1)^3} dx$$
 is equal to :
(1) $\frac{x^5}{2(x^5 + x^3 + 1)^2} + C$ (2) $\frac{-x^{10}}{2(x^5 + x^3 + 1)^2} + C$

(3)
$$\frac{-x^3}{(x^5 + x^3 + 1)^2} + C$$

(4)
$$\frac{x^{10}}{2(x^5+x^3+1)^2} + C$$

(where c is an arbitary constant)

Matrix

JEE Academy

Sol.
$$\int \frac{(2x^{12} + 5x^9) dx}{x^{15} (1 + x^{-2} + x^{-5})^3}$$
$$1 + x^{-2} + x^{-5} = t$$
$$I = -\int \frac{dt}{t^3}$$
$$= \frac{1}{2t^2} + C$$
$$= \frac{x^{10}}{2(x^5 + x^3 + 1)^2} + C$$

34. For $x \in R$, $f(x) = |\log 2 - \sin x|$ and g(x) = f(f(x)), then :

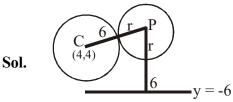
(1) $g'(0) = -\cos(\log 2)$ (2) g is differentiable at x = 0 and $g'(0) = -\sin(\log 2)$

(3) g is not differentiable at x = 0

(2) g is universitiated at
$$a = 0$$
 and $g(0) = \sin(0)$
(4) g'(0) = $\cos(\log 2)$

Sol.
$$g(x) = |\log 2 - \sin| \log 2 - \sin x||$$

 $gx near by of x = 0$
 $g(x) = \log 2 - \sin(\log 2 - \sin x)$
 $g'(x) = -(\cos(\cos 2 - \sin x))(-\cos x)$
 $g'(0) = \cos(\log 2)$


35. The centres of those circles which touch the circle, $x^2 + y^2 - 8x - 8y - 4 = 0$, externally and also touch the x-axis, lie on :

(1) a hyperbola

(2) a parabola

(3) a circle

(4) an ellipse which is not a circle

Distance of P from (4, 4) = Distance of P from y = -6 \Rightarrow locus of P is parabola

36. The sum of all real values of x satisfying the equation :

$$(x^{2}-5x+5)^{x^{2}+4x-60} = 1$$
 is:
(1) 6 (2) 5 (3) 3 (4) -4
 $x^{2}-5x+5 = 1$

Sol.

 \Rightarrow x = 1, 4

IEE Academv $x^2 + 4x - 60 = 0$ x = -10, x = 6 $x^2 - 5x + 5 = -1$ $\mathbf{x} = 2$ x = 3 (Rejected) Sum = 1 + 4 + 6 - 10 + 2= 3

(1) $p \vee q$

Matrix

37. If the 2nd, 5th and 9th terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is :

- (1)1(2)7/4(3) 8/5(4) 4/3Sol. $T_2 = a$ $T_5 = a + 3d$ $T_9 = a + 7d$ $(a + 3d)^2 = a(a + 7d)$ $d = \frac{a}{o}$ $r = \frac{a+3d}{a} = 1 + \frac{3d}{a}$ $r = 1 + \frac{3}{0}$ $=\frac{4}{3}$
- 38. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is :
- $(1)\frac{2}{\sqrt{3}}$ $(3)\frac{4}{3}$ $(4) \frac{4}{\sqrt{3}}$ (2) $\sqrt{3}$ 2b = aeSol. $4b^2 = a^2e^2$ $4a^2(e^2-1) = a^2e^2$ $e = \frac{2}{\sqrt{3}}$ If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^2}\right)^n$, $x \neq 0$, is 28, then the sum of the coefficients of 39. all the terms in this expansion, is : (1) 243(2)729(3) 64 (4) 2187Number of terms = 2n + 1 = 28Sol. $n = \frac{27}{2}$ thats why it is bonus The Boolean Expression $(p \land \neg q) \lor q \lor (\neg p \land q)$ is equivalent to : 40. (2) $p \lor \sim q$ (3) ~ $p \wedge q$

(4) $p \wedge q$

Code : H

Sol. $(p \land \neg q) \cup (\neg p \land q) \lor q$ $(\neg (p \rightarrow q)) \lor (\neg (q \rightarrow p)) \lor q$ $\neg ((p \rightarrow q) \land (q \rightarrow p)) \lor q$ $\neg (p \leftrightarrow q) \lor q$ $((\neg p) \leftrightarrow q) \lor q$

Now make truth table

41. Consider
$$f(x) = \tan^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in \left(0, \frac{\pi}{2}\right)$$
. A normal to $y = f(x)$ at $x = \frac{\pi}{6}$ also passes through the

point:

$$(1) \left(\frac{\pi}{6}, 0\right) \qquad (2) \left(\frac{\pi}{4}, 0\right) \qquad (3) (0, 0) \qquad (4) \left(0, \frac{2\pi}{3}\right)$$
Sol. $f(x) = \tan^{-1} \left(\frac{1 + \sin x}{\cos x}\right)$
 $= \tan^{-1} \left(\tan \left(\frac{\pi}{4} + \frac{x}{2}\right)\right)$
 $f(x) = \frac{\pi}{4} + \frac{x}{2}$
 $f'(x) = \frac{1}{2}$
Eq. of normal $y - \frac{\pi}{3} = -2 \left(x - \frac{\pi}{6}\right)$
 $2x + y = \frac{2\pi}{3}$
42. $\lim_{n \to \infty} \left(\frac{(n+1)(n+2)...3n}{n^{2^n}}\right)^{1/n}$ is equal to :
 $(1) \frac{9}{c^2} \qquad (2) 3 \log 3 - 2 \qquad (3) \frac{18}{c^4} \qquad (4) \frac{27}{c^2}$
Sol. $L = \prod_{r=1}^{2n} \left(\frac{n+r}{n}\right)^{\frac{1}{n}}$
 $\ln L = \frac{1}{n} \sum_{r=1}^{2n} ln \left(1 + \frac{r}{n}\right)$
 $\int_{0}^{2} ln (1+x) dx$
 $ln L = 3ln 3 - 2$
 $L = \frac{27}{c^2}$

- If one of the diameters of the circle, given by the equation, $x^2 + y^2 4x + 6y 12 = 0$, is a chord of a circle 43. S, whose centre is at (-3, 2), then the radius of S is :
- (3) $5\sqrt{2}$ (4) $5\sqrt{3}$ (1)5(2) 10Sol. $r_1 = 5$ $d = \sqrt{50}$ $r = \sqrt{r_1^2 + d^2}$ $=\sqrt{75}=5\sqrt{3}$
- 44. Let two fair six-faced dice A and B be thrown simultaneously. If E_1 is the event that die A shows up four E_2 is the event that die B shows up two and E₃ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT true?
 - (1) E_1 and E_3 are independent (2) E_1 , E_2 and E_3 are independent
 - (3) E_1 and E_2 are independent

Matrix

IEE Academy

(4) E_2 and E_3 are independent

 $P(E_1 \cap E_2 \cap E_3) = 0$ Sol. and $P(E_1) = 1/6$ $P(E_2) = 1/6$ $P(E_3) = 1/2$ So $E_1, E_2 \& E_3$ are not independent

46.

A value of θ for which $\frac{2+3i\sin\theta}{1-2i\sin\theta}$ is purely imaginary, is : 45.

(1)
$$\sin^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
 (2) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (3) $\frac{\pi}{3}$ (4) $\frac{\pi}{6}$
Sol. $z = \frac{2+3i\sin\theta}{1-2i\sin\theta}$
 $z+\overline{z}=0$
 $\Rightarrow \sin^2\theta = 1/3$
 $\sin\theta = \frac{1}{\sqrt{3}}$
46. If the sum of the first ten terms of the series $\left(1\frac{3}{5}\right)^2 + \left(2\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2 + 4^2 + \left(4\frac{4}{5}\right)^2 + \dots,$

is $\frac{16}{5}$ m, then m is equal to : (1)100(2)99(3) 102(4) 101

Sol. $\frac{16m}{5} = \sum_{r=2}^{n} \left(\frac{4\pi}{5}\right)^{2}$ $\frac{16m}{5} = \frac{16}{25} \sum_{r=2}^{n} r^{2} = \frac{16}{25} \times 505$ $m = 101$ 47. The system of linear equations $x + \lambda y - z = 0$ $\lambda y - y - z = 0$ $x + y - \lambda z = 0$ has a non-trivial solution for: (1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^{2} - \lambda = 0$ $\lambda^{2} - \lambda = 0$ $\lambda - 0, \ \lambda - 1, \ \lambda1$ 48. If the line, $\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^{2} + m^{2}$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane $3l - 2m + 4 = 6 (1)$ $(2, -1, 3)$ is perpendicular to plane $2l - m - 3 (2)$ $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL is : (1) 52 rd (2) 58 th (3) 46 th (4) 59 th Sol. $A (LLMS) = \frac{14}{12} = 12$ $L (ALMS) = 3l - 24$	мат	Matrix JEE Academy	JEE [MAIN] 2016	Code : H	
$m = 101$ $m = 101$ 47. The system of linear equations $x + \lambda y - z = 0$ $\lambda y - y - z = 0$ $x + y - \lambda z = 0$ has a non-trivial solution for: (1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^{3} - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^{2} + m^{2}$ is equal to: (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane $3l - 2m + 4 = 6$ (1) (2, -1, 3) is perpendicular to plane $2l - m - 3 = 0$ $2l - m = 3 = 0$ (2) $\Rightarrow l = 1, m = -1$ 49. If fall the words (with or without meaning) having five letters, formed using the letters of the word SMALL is: (1) 52^{rad} (2) 58^{rab} (3) 46^{rbb} (4) 59^{rbb} Sol. (A (LLMS) $\Rightarrow \frac{14}{12} = 12$	Sol.	$\frac{16m}{5} = \sum_{r=2}^{11} \left(\frac{4r}{5}\right)^2$			
47. The system of linear equations $x + \lambda y - z = 0$ $\lambda y - y - z = 0$ $x + y - \lambda z = 0$ has a non-trivial solution for : (1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^3 - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. $(3, -2, -4)$ will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{md} (2) 58^{m} (3) 46^{m} (4) 59^{m} Sol. $A(LLMS) \Rightarrow \frac{ \frac{4}{ 2}}{ 2} = 12$		$\frac{16m}{5} = \frac{16}{25} \sum_{r=2}^{11} r^2 = \frac{16}{25} \times 505$			
$x + \lambda y - z = 0$ $\lambda y - y - z = 0$ $x + y - \lambda z = 0$ has a non-trivial solution for : (1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^{3} - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^{2} + m^{2}$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane $3l - 2m + 4 = 6$ (1) (2, -1, 3) is perpendicular to plane $2l - m = 3 = 0$ $2l - m = 3 = 0$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{nh} (3) 46^{nh} (4) 59^{nh} Sol. (A (LLMS)) $\Rightarrow \frac{ 4 }{ 2} = 12$		m = 101			
$\lambda y - y - z = 0$ $x + y - \lambda z = 0$ has a non-trivial solution for: (1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^3 - \lambda = 0$ $\lambda = 0, \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is equal to: (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is: (1) 52^{nd} (2) 58^{nb} (3) 46^{na} (4) 59^{nb} Sol. $A(LLMS) \Rightarrow \frac{14}{12} = 12$	47.	The system of linear equations			
$x + y - \lambda z = 0$ has a non-trivial solution for: (1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^{3} - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^{2} + m^{2}$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{nb} (3) 46^{nb} (4) 59^{nb} Sol. $A(LLMS) \Rightarrow \frac{14}{12} = 12$		$x + \lambda y - z = 0$			
has a non-trivial solution for: (1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^3 - \lambda = 0$ $\lambda = 0, \ \lambda = 1, \ \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{nb} (3) 46^{nb} (4) 59^{nb} Sol. $A(LLMS) \Rightarrow \frac{ 4}{ 2} = 12$		$\lambda y - y - z = 0$			
(1) exactly two values of λ (2) exactly three values of λ (3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^3 - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4}{ 2} = 12$		$x+y-\ \lambda z\ =0$			
(3) infinitely many values of λ (4) exactly one value of λ Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^3 - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{md} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2} = 12$		has a non-trivial solution for :			
Sol. $\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$ $\lambda^{3} - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x - 3}{2} = \frac{y + 2}{-1} = \frac{z + 4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^{2} + m^{2}$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. (3, -2, -4) will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2} = 12$		(1) exactly two values of λ	(2) exactly three values of λ		
$\lambda^{3} - \lambda = 0$ $\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^{2} + m^{2}$ is equal to: (1) 5 (2) 2 (3) 26 (4) 18 Sol. $(3, -2, -4)$ will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is: (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2 } = 12$		(3) infinitely many values of λ	(4) exactly one value of λ		
$\lambda = 0, \lambda = 1, \lambda = -1$ 48. If the line, $\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is equal to : (1) 5 (2) 2 (3) 26 (4) 18 Sol. $(3, -2, -4)$ will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2} = 12$	Sol.	$\begin{vmatrix} 1 & \lambda & 1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda \end{vmatrix} = 0$			
48. If the line, $\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is equal to: (1) 5 (2) 2 (3) 26 (4) 18 Sol. $(3, -2, -4)$ will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4}{ 2} = 12$		$\lambda^3 - \lambda = 0$			
$(1) 5 \qquad (2) 2 \qquad (3) 26 \qquad (4) 18$ Sol. $(3, -2, -4) \text{ will lie on plane} \qquad 3l - 2m + 4 = 6 \qquad (1) \qquad (2, -1, 3) \text{ is perpendicular to plane} \qquad 2l - m - 3 = 0 \qquad 2l - m = 3 \qquad (2) \qquad \Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : $(1) 52^{nd} \qquad (2) 58^{th} \qquad (3) 46^{th} \qquad (4) 59^{th}$ Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2 } = 12$		$\lambda = 0, \lambda = 1, \lambda = -1$			
Sol. $(3, -2, -4)$ will lie on plane 3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2 } = 12$	48.	If the line, $\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+3}{-3}$	$\frac{4}{2}$ lies in the plane, $lx + my - z = 9$, then $l^2 + m^2$ is each $l^2 + m^2$	qual to :	
3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to plane 2l - m - 3 = 0 2l - m = 3 (2) $\Rightarrow l = 1, m = -1$ 49. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2 } = 12$		(1) 5 (2) 2	(3) 26 (4) 18		
and arranged as in a dictionary; then the position of the word SMALL is : (1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2 } = 12$	Sol.	3l - 2m + 4 = 6 (1) (2, -1, 3) is perpendicular to pl 2l - m - 3 = 0 2l - m = 3 (2)	ane		
(1) 52^{nd} (2) 58^{th} (3) 46^{th} (4) 59^{th} Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2 } = 12$	49.	If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL			
Sol. $A(LLMS) \Rightarrow \frac{ 4 }{ 2 } = 12$		and arranged as in a dictionary; then the position of the word SMALL is :			
—		(1) 52^{nd} (2) 58^{d}	h $(3) 46^{th}$ $(4) 59^{th}$		
	Sol.				

 $\frac{SL(ALM) \Rightarrow \underline{3} = 6}{\frac{SMALL \Rightarrow 1}{58}}$

Matrix

IEE Academv

50. If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true?

 $(1) 3a^2 - 34a + 91 = 0 (2) 3a^2 - 23a + 44 = 0 (3) 3a^2 - 26a + 55 = 0 (4) 3a^2 - 32a + 84 = 0$

Sol.
$$\sigma^2 = (3.5)^2 = 12.25$$

 $\sigma^2 = \frac{1}{n} \sum x^2 - (\overline{x})^2$
 $12.25 = \frac{1}{4} (2^2 + 3^2 + a^2 + 11^2) - (\frac{2 + 3 + a + 11}{4})^2$
 $3a^2 - 32a + 84 = 0$

- 51. A wire of length 2 units is cut into two parts which are bent respectively to form a square of side = x units and a circle of radius = r units. If the sum of the areas of the square and the circle so formed is minimum, then :
- (3) $2x = (\pi + 4)r$ (4) $(4 \pi)x = \pi r$ (1) x = 2r(2) 2x = r4x 2-4xSol. Perimeter of square = 4x and circumference of circle = 2-4x $2\pi r = (2 - 4x)$ $A = x^2 + \pi \left(\frac{2-4x}{2\pi}\right)^2$ $\frac{dA}{dx} = 0$ $2x = \frac{2}{\pi} \left(2 - 4x \right)$ $2\mathbf{x} = \frac{2(2\pi \mathbf{r})}{\pi}$ x = 2rLet $p = \lim_{x \to 0^+} (1 + \tan^2 \sqrt{x})^{\frac{1}{2x}}$ then log p is equal to : 52. $(1)\frac{1}{2}$ (2) $\frac{1}{4}$ (3) 2 (4)11∞ form Sol.

JEE [MAIN] 2016

$$\log \mathbf{P} = \frac{1}{2}$$

53. Let P be the point on the parabola, $y^2 = 8x$ which is at a minimum distance from the centre C of the circle, $x^2 + (y+6)^2 = 1$. Then the equation of the circle, passing through C and having its centre at P is :

(1)
$$x^{2} + y^{2} - \frac{x}{4} + 2y - 24 = 0$$

(2) $x^{2} + y^{2} - 4x + 9y + 18 = 0$
(3) $x^{2} + y^{2} - 4x + 8y + 12 = 0$
(4) $x^{2} + y^{2} - x + 4y - 12 = 0$

Sol. $P(2t^2, 4t)$

Sol.

Normal at P passes through (0, -6)

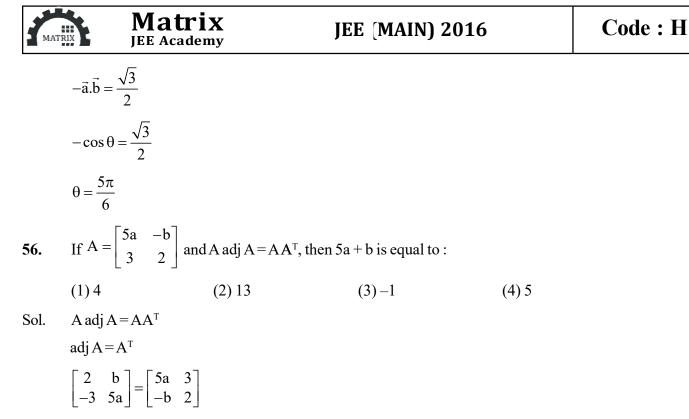
 $tx + y = 4t + 2t^{3}$ -6 = 4t + 2t^{3} $t^{3} + 2t + 3 = 0$ t = -1P(2, -4)

54. If a curve y = f(x) passes through the point (1, -1) and satisfies the differential equation, y(1 + xy)dx = x dy,

then
$$f\left(-\frac{1}{2}\right)$$
 is equal to:
(1) 2/5 (2) 4/5 (3) $-\frac{2}{5}$ (4) $-\frac{4}{5}$
y dx + xy²dx = xdy

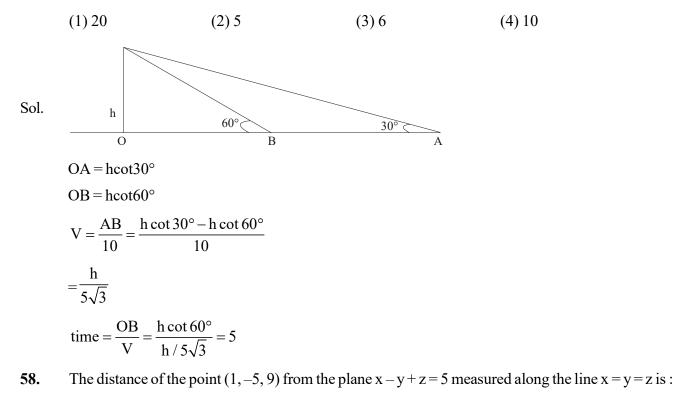
$$ydx - xdy = -xy^{2}dx$$

$$\int \frac{ydx - xdy}{y^{2}} = -\int xdx$$


$$\frac{x}{y} = \frac{-x^{2}}{2} + C$$

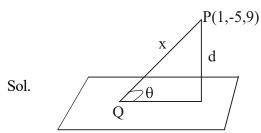
$$(1, -1) \Longrightarrow \left(\frac{x^{2} + 1}{2}\right)$$

$$y = -\frac{2x}{x^{2} + 1}$$


55. Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\sqrt{3}}{2} (\vec{b} + \vec{c})$. If \vec{b} is not parallel to \vec{c} , then the angle between \vec{a} and \vec{b} is :

(1)
$$\frac{2\pi}{3}$$
 (2) $\frac{5\pi}{6}$ (3) $\frac{3\pi}{4}$ (4) $\frac{\pi}{2}$
Sol. $(\vec{a}.\vec{c})\vec{b} - (\vec{a}.\vec{b})\vec{c} = \frac{\sqrt{3}}{2}\vec{b} + \frac{\sqrt{3}}{2}\vec{c}$

$$2 = 5a, b = 3$$


57. A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is 30°. After walking for 10 minutes from A in the same direction, at a point B, he observes that the angle of elevation of the top of the pillar is 60°. Then the time taken (in minutes) by him, from B to reach the pillar, is :

(1) $\frac{10}{\sqrt{3}}$ (2) $\frac{20}{3}$ (3) $3\sqrt{10}$ (4) $10\sqrt{3}$

JEE [MAIN] 2016

Matrix JEE Academy

$$\sin \theta = (1, -1, 1) \land (1, 1, 1)$$

$$= \left| \frac{(1-1+1)}{\sqrt{3}\sqrt{3}} \right| = \frac{1}{\sqrt{3}}$$
$$d = \left| \frac{1+5+9-5}{-10} \right| = \frac{10}{10}$$

$$d = \left| \frac{1+3+3-3}{\sqrt{3}} \right| = \frac{10}{\sqrt{3}}$$

 $x\sin\theta = d$

Sol.

$$\mathbf{x} = \frac{10}{\sqrt{3}} \times 3 = 10\sqrt{3}$$

59. Two sides of a rhombus are along the lines, x - y + 1 = 0 and 7x - y - 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus ?

$$(1)\left(\frac{1}{3}, -\frac{8}{3}\right) \qquad (2)\left(-\frac{10}{3}, -\frac{7}{3}\right) \qquad (3)\left(-3, -9\right) \qquad (4)\left(-3, -8\right)$$

$$\prod_{A} = \frac{1}{2} \prod_{B} \frac{$$

60. If $0 \le x < 2\pi$, then the number of real values of x, which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$, is : (1) 7 (2) 9 (3) 3 (4) 5

Matrix JEE Academy

Sol. $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$

$$2\cos\frac{5x}{2}\cos x\cos\frac{x}{2} = 0$$
$$\cos\frac{5x}{2} = 0$$
$$x = \frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5}$$
$$\cos x = 0$$
$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$
$$\cos\frac{x}{2} = 0$$
$$x = \pi$$

Total = 7 solution