# JEE Main April 2024 Question Paper With Text Solution 08 April | Shift-2

## **MATHEMATICS**



JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

## JEE MAIN APRIL 2024 | 08<sup>TH</sup> APRIL SHIFT-2

#### **SECTION - A**

Question ID: 87827056058

- 1. Let  $A = \{2,3,6,8,9,11\}$  and  $B = \{1,4,5,10,15\}$ . Let R be a relaxtion on  $A \times B$  defined by (a,b)R(c,d) if and only if 3ad-7bc is an even integer. Then the relation R is:
  - (1) an equivalence relation

- (2) reflexive but not symmetric
- (3) reflexive and symmetric but not transitive
- (4) transitive but not symmetric

**Ans.** Official answer NTA(3)

Sol.

Question ID: 87827056061

2. If 
$$\alpha \neq a, \beta \neq b, \gamma \neq c$$
 and  $\begin{vmatrix} \alpha & b & c \\ a & \beta & c \\ a & b & \gamma \end{vmatrix} = 0$ , then  $\frac{a}{\alpha - a} + \frac{b}{\beta - b} + \frac{\gamma}{\gamma - c}$  is equal to:

(1) 1

(2)0

(3)3

(4)2

**Ans.** Official answer NTA(2)

Sol.

Question ID: 87827056066

3. For a, b > 0, let 
$$f(x) = \begin{cases} \frac{\tan((a+1)x) + b \tan x}{x}, & x < 0 \\ 3, & x = 0 \text{ be a continuous function at } x = 0. \text{ Then } \frac{b}{a} \text{ is equal } \\ \frac{\sqrt{ax + b^2x^2} - \sqrt{ax}}{b\sqrt{a}x\sqrt{x}}, & x > 0 \end{cases}$$

to:

(1)5

(2)6

(3)4

(4) 8

**Ans.** Official answer NTA(2)

Sol.

#### **MATRIX JEE ACADEMY**

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 08 April Shift-2

Question ID: 87827056067

If the function  $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$ , a > 0 has a local maximum at  $x = \alpha$  and a local minimum at  $x = \alpha$ 4.  $\alpha^2$ , then  $\alpha$  and  $\alpha^2$  are the roots of the equation :

- (1)  $8x^2 + 6x 1 = 0$  (2)  $x^2 + 6x + 8 = 0$  (3)  $x^2 6x + 8 = 0$  (4)  $8x^2 6x + 1 = 0$

Official answer NTA(3) Ans.

Sol.

Question ID: 87827056074

Let  $\vec{a} = 4\hat{i} - \hat{j} + \hat{k}$ ,  $\vec{b} = 11\hat{i} - \hat{j} + \hat{k}$  and  $\vec{c}$  be a vector such that  $(\vec{a} + \vec{b}) \times \vec{c} = \vec{c} \times (-2\vec{a} + 3\vec{b})$ . If 5.  $(2\vec{a}+3\vec{b})\cdot\vec{c}=1670$  then  $|\vec{c}|^2$  is equal to:

- (1) 1618
- (2)1609
- (3) 1600
- (4) 1627

Official answer NTA(1) Ans.

Sol.

Ouestion ID: 87827056069

The area of the region in the first quadrant inside the circle  $x^2 + y^2 = 8$  and outside the parabola  $y^2 = 2x$  is equal 6.

- (2)  $\pi \frac{1}{2}$
- (3)  $\frac{\pi}{2} \frac{1}{3}$  (4)  $\frac{\pi}{2} \frac{2}{3}$

Official answer NTA(1) Ans.

Sol.

Question ID: 87827056076

7. There are three bags X, Y and Z. Bag X contains 5 one-rupee coins and 4 five-rupee coins; Bag Y contains 4 one-rupee coins and 5 five-rupee coins and Bag Z contains 3 one-rupee coins and 6 five-rupee coins. A bag is selected at random and a coin drawn from it at random is found to be a one-rupee coin. Then the probability, that it came from bag Y, is:

- $(1)\frac{1}{2}$
- $(2) \frac{1}{4}$
- $(3) \frac{1}{3}$
- $(4) \frac{5}{12}$

**MATRIX JEE ACADEMY** 

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 08 April Shift-2

**Ans.** Official answer NTA(3)

Sol.

Question ID: 87827056064

- 8. The sum of all possible values of  $\theta \in [-\pi, 2\pi]$ , for which  $\frac{1+i\cos\theta}{1-2i\cos\theta}$  is purely imaginary, is equal to :
  - (1)  $2\pi$
- (2)  $5\pi$
- (3)  $3\pi$
- (4)  $4\pi$

**Ans.** Official answer NTA(3)

Sol.

Question ID: 87827056062

- 9. The number of ways five alphabets can be chosen from the alphabets of the word MATHEMATICS, where the chosen alphabets are not necessarily distinct, is equal to:
  - (1)181
- (2)177
- (3)179
- (4)175

**Ans.** Official answer NTA(3)

Sol.

Question ID: 87827056065

- 10. In an increasing geometric progression of positive terms, the sum of the second and sixth terms is  $\frac{70}{3}$  and the product of the third and fifth terms is 49. Then the sum of the 4th, 6th and 8th terms is equal to:
  - (1)91
- (2)96
- (3)78
- (4)84

Ans.

**Ans.** Official answer NTA(1)

Question ID: 87827056075

- 11. Let  $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ ,  $\vec{b} = 2\hat{i} + 3\hat{j} 5\hat{k}$  and  $\vec{c} = 3\hat{i} \hat{j} + \lambda\hat{k}$  be three vectors. Let  $\vec{r}$  be a unit vector along  $\vec{b} + \vec{c}$ . If  $\vec{r} \cdot \vec{a} = 3$ , then  $3\lambda$  is equal to:
  - (1)30
- (2)21
- (3)25
- (4)27

**Ans.** Official answer NTA(3)

#### **MATRIX JEE ACADEMY**

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 08 April Shift-2

Sol.

Question ID: 87827056060

12. If the system of equations  $x + 4y - z = \lambda$ ,  $7x + 9y + \mu z = -3$ , 5x + y + 2z = -1 has infinitely many solutions, then  $(2\mu + 3\lambda)$  is equal to:

(1)3

(2)2

(3) - 3

(4)-2

Official answer NTA(3) Ans.

Sol.

Question ID: 87827056068

Let  $\int_{0}^{\log_e 4} \frac{dx}{\sqrt{e^x - 1}} = \frac{\pi}{6}$ . Then  $e^{\alpha}$  and  $e^{-\alpha}$  are the roots of the equation : 13.

(1)  $2x^2 - 5x - 2 = 0$  (2)  $x^2 - 2x - 8 = 0$  (3)  $2x^2 - 5x + 2 = 0$  (4)  $x^2 + 2x - 8 = 0$ 

Official answer NTA(3) Ans.

Sol.

Question ID: 87827056077

If the value of  $\frac{3\cos 36^{\circ} + 5\sin 18^{\circ}}{5\cos 36^{\circ} - 3\sin 18^{\circ}}$  is  $\frac{a\sqrt{5} - b}{c}$ , where a, b, c are natural numbers and gcd(a, c) = 1, then a + b14.

b + c is equal to:

(1)52

(2)50

(3)40

(4)54

Official answer NTA(1) Ans.

Sol.

Question ID: 87827056063

If the term independent of x in the expansion of  $\left(\sqrt{a}x^2 + \frac{1}{2x^3}\right)^{10}$  is 105, then  $a^2$  is equal to : 15.

(1)4

(2)2

(3)9

(4)6

Official answer NTA(1) Ans.

**MATRIX JEE ACADEMY** 

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 08 April Shift-2

Sol.

Question ID: 87827056072

- 16. If the image of the point (-4,5) in the line x + 2y = 2 lies on the circle  $(x + 4)^2 + (y 3)^2 = r^2$ , then r is equal to:
  - (1)4
- (2) 1

- (3)3
- (4) 2

**Ans.** Official answer NTA (4)

Sol.

Question ID: 87827056059

- 17. Let  $f(x) = \begin{cases} -a & \text{if } -a \le x \le 0 \\ x+a & \text{if } 0 < x \le a \end{cases}$  where a > 0 and  $g(x) = \frac{\left(f(|x|) |f(x)|\right)}{2}$ . Then the function g : [-a, a]  $\rightarrow [-a, a]$  is :
  - (1) one-one

(2) neither one-one nor onto

(3) onto

(4) both one-one and onto

**Ans.** Official answer NTA(2)

Sol.

Question ID: 87827056070

- 18. Let y=y(x) be the solution curve of the differential equation  $\sec y \frac{dy}{dx} + 2x \sin y = x^3 \cos y$ , y(1) = 0. Then  $y(\sqrt{3})$  is equal to:
  - $(1) \frac{\pi}{6}$
- $(2) \frac{\pi}{12}$
- $(3) \frac{\pi}{4}$
- $(4) \frac{\pi}{3}$

**Ans.** Official answer NTA(3)

Sol.

Question ID: 87827056071

19. If the line segment joining the points (5,2) and (2,a) subtends an angle  $\frac{\pi}{4}$  at the origin, then the absolute value of the product of all possible values of a is:

#### **MATRIX JEE ACADEMY**

#### **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 08 April Shift-2

(1)2

(2)8

(3)4

(4)6

Ans. O

Official answer NTA(3)

Sol.

Question ID: 87827056073

- 20. If the shortest distance between the lines  $\frac{x-\lambda}{2} = \frac{y-4}{3} = \frac{z-3}{4}$  and  $\frac{x-2}{4} = \frac{y-4}{6} = \frac{z-7}{8}$  is  $\frac{13}{\sqrt{29}}$ , then a value of  $\lambda$  is:
  - $(1) \frac{13}{25}$
- (2) 1
- $(3) \frac{13}{25}$
- (4)-1

**Ans.** Official answer NTA(2)

Sol.

**SECTION - B** 

Question ID: 87827056081

21. Let A be the region enclosed by the parabola  $y^2 = 2x$  and the line x = 24. Then the maximm area of the rectangle inscribed in the region A is \_\_\_\_\_\_.

**Ans.** Official answer NTA (128)

Sol.

Question ID: 87827056085

22. Let S be the focus of the hyperbola  $\frac{x^2}{3} - \frac{y^2}{5} = 1$ , on the positive x-axis. Let C be the circle with its centre at  $A(\sqrt{6}, \sqrt{5})$  and passing through the point S. If O is the origin and SAB is a diameter of C, then the square of the area of the trinagle OSB is equal to \_\_\_\_\_.

**Ans.** Official answer NTA(40)

Sol.

**MATRIX JEE ACADEMY** 

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 08 April Shift-2

Question ID: 87827056083

23. If 
$$\int \frac{1}{\sqrt[5]{(x-1)^4(x+3)^6}} dx = A \left(\frac{\alpha x - 1}{\beta x + 3}\right)^B + C$$
, where C is the contant of integration, then the value of  $\alpha + \beta$  + 20AB is

**Ans.** Official answer NTA(7)

Sol.

Question ID: 87827056078

- 24. The number of distinct real roots of the equation |x + 1| |x + 3| 4|x + 2| + 5 = 0, is \_\_\_\_\_.
- **Ans.** Official answer NTA (2)

Sol.

Question ID: 87827056080

25. An arithmetic progression is written in the following way



The sum of all the terms of the 10<sup>th</sup> row is \_\_\_\_\_.

**Ans.** Official answer NTA(1505)

Sol.

Question ID: 87827056082

26. If 
$$\alpha = \lim_{x \to 0^+} \left( \frac{e^{\sqrt{\tan x}} - e^{\sqrt{x}}}{\sqrt{\tan x} - \sqrt{x}} \right)$$
 and  $\beta = \lim_{x \to 0} (1 + \sin)^{\frac{1}{2} \cot x}$  are the roots of the quadratic equation  $ax^2 + bx - \sqrt{e} = 0$ , then  $12 \log_e(a + b)$  is equal to \_\_\_\_\_\_.

#### **MATRIX JEE ACADEMY**

#### **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 08 April Shift-2

**Ans.** Official answer NTA (6)

Sol.

Question ID: 87827056079

27. Let a ray of light passing through the point (3,10) reflects on the line 2x + y = 6 and the reflected ray passes through the point (7,2). If the equation of the incident ray is ax + by + 1 = 0, then  $a^2 + b^2 + 3ab$  is equal to

**Ans.** Official answer NTA(1)

Sol.

Question ID: 87827056086

28. Let  $P(\alpha, \beta, \gamma)$  be the image of the point Q(1,6,4) in the line  $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ . Then  $2\alpha + \beta + \gamma$  is equal to

**Ans.** Official answer NTA(11)

Sol.

Question ID: 87827056087

29. Let a, b,  $c \in \mathbb{N}$  amd a < b < c. Let the mean, the mean deviation about the mean and the variance of the 5 observations 9,25,a, b, c be 18, 4 and  $\frac{136}{5}$ , respectively. Then 2a + b - c is equal to \_\_\_\_\_.

**Ans.** Official answer NTA(33)

Sol.

Question ID: 87827056084

30. Let  $\alpha |x| = |y| e^{xy - \beta}$ ,  $\alpha, \beta \in \mathbb{N}$  be the solution of the differential equation xdy - ydx + xy(xdy + ydx) = 0, y(1) = 2. Then  $\alpha + \beta$  is equal to \_\_\_\_\_.

**Ans.** Official answer NTA (4)

Sol.

#### **MATRIX JEE ACADEMY**