JEE Main April 2024 Question Paper With Text Solution 08 April | Shift-1

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN APRIL 2024 | 08TH APRIL SHIFT-1

SECTION - A

Question ID: 68019114349

- 1. Let $H: \frac{-x^2}{a^2} + \frac{y^2}{b^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta^2$ is equal to:
 - (1)172
- (2) 170
- (3)171
- (4) 169

Ans. Official answer NTA(3)

Sol.

Question ID: 68019114353

- 2. If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, then $80(\tan^2 x \cos x)$ is equal to:
 - (1)108
- (2)18
- (3)109
- (4) 19

Ans. Official answer NTA(3)

Sol.

Question ID: 68019114350

3. Let P(x, y, z) be a point in the first octantm, whose projection in the xy-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive x-axis is θ ; and the angle between OP and the positive z-axis be ϕ , where O is the origin. Then the distance of P from the x-axis is:

(1)
$$\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$$

(2)
$$\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$$

(3)
$$\gamma \sqrt{1-\sin^2\phi\cos^2\theta}$$

(4)
$$\gamma \sqrt{1-\sin^2\theta\cos^2\phi}$$

Ans. Official answer NTA(3)

Sol.

MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 08 April Shift-1

Question ID: 68019114338

The equations of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x - 2y = 5, respectively. The 4. point $\left(2, -\frac{4}{3}\right)$ divides the third side BC internally in the ratio 2:1. The equation of the side BC is:

$$(1) x + 3y + 2 = 0$$

$$(2) x + 6y + 6 = 0$$

(2)
$$x + 6y + 6 = 0$$
 (3) $x - 6y - 10 = 0$ (4) $x - 3y - 6 = 0$

$$(4) x - 3y - 6 = 0$$

Official answer NTA(1) Ans.

Sol.

Question ID: 68019114342

Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x - 10$. The number of points of local maxima of fin interval $(0, 2\pi)$ is: 5.

(1)4

(2)1

(3)2

(4)3

Official answer NTA(3) Ans.

Sol.

Question ID: 68019114348

Let the circles $C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$ and $C_2:(x-8)^2+(y-\frac{15}{2})^2=r_2^2$ touch each other externally 6. at the point (6,6). If the point (6,6) divides the line segment joining the centres of the circle C_1 and C_2 internally in the ratio 2:1, then $(\alpha + \beta) + 4(r_1^2 + r_2^2)$ equals:

(1) 145

(2)110

(3) 125

(4) 130

Ans. Official answer NTA (4)

Sol.

Question ID: 68019114341

The number of critical points of the function $f(x) = (x-2)^{\frac{2}{3}}(2x+1)$ is: 7.

(1)0

(2)1

(3)2

(4) 3

Official answer NTA(3) Ans.

Sol.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question ID: 68019114337

8. Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 - A - 21I$, where I is the identity matrix of order 3×3 , then 2a + 3b is equal

to:

- (1)-9
- (2)-13
- (3)-12
- (4) 10

Ans. Official answer NTA(2)

Sol.

Question ID: 68019114352

- 9. Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest possible product, is $\frac{m}{n}$, where gcd(m, n) = 1, then n m equals:
 - (1)9
- (2) 8
- (3)11
- (4) 10

Ans. Official answer NTA (4)

Sol.

Question ID: 68019114340

- 10. For the function $f(x) = (\cos x) x + 1$, $x \in \mathbb{R}$, between the following two statements :
 - (S1) f(x) = 0 for only one value of x in $[0, \pi]$.
 - **(S2)** f(x) is decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$.
 - (1) Only (S2) is correct.

- (2) Only (S1) is correct.
- (3) Both (S1) and (S2) are correct.
- (4) Both (S1) and (S2) are incorrect.

Ans.

Ans. Official answer NTA(2)

Question ID: 68019114334

Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and $f: A \rightarrow$ 11.

Z be the function $f(x) = \left| \log_2 \left(x^2 + \left\lceil \frac{x^3}{5} \right\rceil \right) \right|$. The number of one-to-one functions from A to the range of f

is:

- (1)25
- (2)20
- (3) 120
- (4)24

Official answer NTA(3) Ans.

Sol.

Question ID: 68019114351

The set of all α , for which the vectors $\vec{a} = \alpha t \hat{i} + 6 \hat{j} - 3 \hat{k}$ and $\vec{b} = t \hat{i} - 2 \hat{j} - 2\alpha t \hat{k}$ are inclined at an obtuse angle 12. for all $t \in R$, is:

$$(1)\left(-\frac{4}{3},1\right)$$

$$(1)\left(-\frac{4}{3},1\right) \qquad (2)\left(-\frac{4}{3},0\right]$$

Official answer NTA (2) Ans.

Sol.

Question ID: 68019114344

The value of $k \in N$ for which the integral $I_n = \int_0^1 (1-x^k)^n dx$, $n \in N$, satisfies 147 $I_{20} = 148 I_{21}$ is: 13.

- (1)8
- (2)7
- (3) 10
- (4) 14

Official answer NTA(2) Ans.

Sol.

Question ID: 68019114335

Let z be a complex number such that |z+2|=1 and $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. Then the value of $\left|\operatorname{Re}\left(\overline{z+2}\right)\right|$ is: 14.

- $(1) \frac{2\sqrt{6}}{5}$
- (3) $\frac{1+\sqrt{6}}{5}$ (4) $\frac{\sqrt{6}}{5}$

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 08 April Shift-1

Ans. Official answer NTA(1)

Sol.

Question ID: 68019114343

- 15. Let $I(x) = \int \frac{6}{\sin^2 x (1-\cot x)^2} dx$. If I(0) = 3, then $I(\frac{\pi}{12})$ is equal to:
 - (1) $2\sqrt{3}$
- (2) $\sqrt{3}$
- (3) $3\sqrt{3}$
- $(4) 6\sqrt{3}$

Ans. Official answer NTA(3)

Sol.

Question ID: 68019114346

- 16. Let y = y(x) be the solution of the differential equation $(1 + y^2)e^{\tan x} dx + \cos^2 x (1 + e^{2\tan x})dy = 0$, y(0) = 1. Then $y\left(\frac{\pi}{4}\right)$ is equal to :
 - $(1)\frac{2}{e}$
- (2) $\frac{2}{e^2}$
- (3) $\frac{1}{e^2}$
- $(4) \frac{1}{e}$

Ans. Official answer NTA(4)

Sol.

Question ID: 68019114345

17. Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0 is $e^{-a} + 4a^2 + a - 1$. Then the differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is:

$$(1) \left(8e^{x} - 1 \right) \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$$

(2)
$$\left(8e^{x} + 1\right) \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} = 0$$

(3)
$$\left(8e^x + 1\right) \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

(4)
$$\left(8e^{x} - 1\right) \frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} = 0$$

Ans. Official answer NTA(3)

Sol.

Question ID: 68019114347

18. If the shortest distance between the lines

$$L_1: \vec{r} = (2+\lambda)\hat{i} + (1-3\lambda)\hat{j} + (3+4\lambda)\hat{k}, \quad \lambda \in \mathbb{R}$$

$$L_2: \vec{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + (5+\mu)\hat{k}, \quad \mu \in \mathbb{R}$$

is $\frac{m}{\sqrt{n}}$, where gcd(m, n) = 1, then the value of m + n equals:

- (1)387
- (2)390
- (3)377
- (4) 384

Ans. Official answer NTA(1)

Sol.

Question ID: 68019114339

19. If the set $R = \{(a, b): a + 5b = 42, a, b \in N\}$ has m elements and $\sum_{n=1}^{m} (1 - i^{n!}) = x + iy$, where $i = \sqrt{-1}$, then the value of m + x + y is:

- (1) 8
- (2)12
- (3)5
- (4) 4

Ans. Official answer NTA(2)

Sol.

Question ID: 68019114336

20. The sum of all the solutions of the equation $(8)^{2x} - 16 \cdot (8)^x + 48 = 0$ is:

- $(1)\log_{\mathfrak{g}}(4)$
- $(2) 1 + \log_{8}(6)$
- $(3) 1 + \log_{6}(8)$
- $(4) \log_{\mathfrak{g}}(6)$

Ans. Official answer NTA(2)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 08 April Shift-1

SECTION - B

Question ID: 68019114355	
21.	Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to
Ans.	Official answer NTA(7)
Sol.	
Quest	ion ID : 68019114363
22.	Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X
	and Y respectively denote the number of blue and yellow balls. If \overline{X} and \overline{Y} respectively, then $7\overline{X} + 4\overline{Y}$ is
	equal to
Ans.	Official answer NTA(17)
Sol.	
Question ID: 68019114362	
23.	If the orthocentre of the triangle formed by the lines $2x + 3y - 1 = 0$, $x + 2y - 1 = 0$ and $ax + by - 1 = 0$, is the centroid of another triangle, whose circumcentre and orthocentre respectively are $(3, 4)$ and $(-6, -8)$, then the
	value of $ a-b $ is
Ans.	Official answer NTA(16)

Question ID: 68019114360

24. Let the area of the region enclosed by the curve $y = min \{ \sin x, \cos x \}$ and the x-axis between $x = -\pi$ to $x = \pi$ be A. Then A^2 is equal to _____.

Ans. Official answer NTA(16)

Sol.

Sol.

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 08 April Shift-1

Question ID: 68019114357

25. Let
$$\alpha = \sum_{r=0}^{n} \left(4r^2 + 2r + 1\right) {^{n}C_{r}}$$
 and $\beta = \left(\sum_{r=0}^{n} \frac{{^{n}C_{r}}}{r+1}\right) + \frac{1}{n+1}$. If $140 < \frac{2\alpha}{\beta} < 281$, then the value of n is

Ans. Official answer NTA(5)

Sol.

Question ID: 68019114361

26. Let $\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}$, $\vec{b} = 3\hat{i} + 7\hat{j} - 13\hat{k}$ and $\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to _____.

Ans. Official answer NTA (569)

Sol.

Question ID: 68019114356

27. The number of 3-digit numbers, formed using the digirts 2,3,4,5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to ______.

Ans. Official answer NTA (36)

Sol.

Question ID: 68019114354

28. If the range of $f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$, $\theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to _____.

Ans. Official answer NTA (96)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 08 April Shift-1

Question ID: 68019114359

- 29. The value of $\lim_{x\to 0} 2\left(\frac{1-\cos x\sqrt{\cos 2x}\sqrt[3]{\cos 3x}.....\sqrt[10]{\cos 10x}}{x^2}\right)$ is _____.
- **Ans.** Official answer NTA (55)

Sol.

Question ID: 68019114358

30. Let the positive integers be written in the form

If the k^{th} row contains exactly k numbers for every natural number k, then the row in which the number 5310 will be, is

Ans. Official answer NTA (103)

Sol.

MATRIX JEE ACADEMY