JEE Main April 2024 Question Paper With Text Solution 06 April | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN APRIL 2024 | 06TH APRIL SHIFT-2

SECTION - A

Question ID: 87827055893

1.	Let ABC be an equilateral triangle. A new triangle is formed by joining the middle points of all sides of the
	triangle ABC and the same process is repeated infinitely many times. If P is the sum of perimeters and Q is be
	the sum of areas of all the triangles formed in this process, then:

- (1) $P = 36\sqrt{3}Q^2$ (2) $P^2 = 36\sqrt{3}Q$ (3) $P^2 = 72\sqrt{3}Q$ (4) $P^2 = 6\sqrt{3}Q$

Official answer NTA(2) Ans.

Sol.

Question ID: 87827055881

- If A is a square matrix of order 3 such that $\det(A) = 3$ and $\det\left(\operatorname{adj}\left(-4\operatorname{adj}\left(-3\operatorname{adj}\left(3\operatorname{adj}\left((2A)^{-1}\right)\right)\right)\right)\right) = 2^{m}3^{n}$, 2. then m + 2n is equal to:
 - (1)3
- (2)2
- (3)6
- (4)4

Official answer NTA (4) Ans.

Sol.

Question ID: 87827055884

- 3. A software company sets up m number of computer systems to finish an assignment in 17 days. If 4 computer systems crashed on the start of the second day, 4 more computer systems crashed on the start of the third day and so on, then it took 8 more days to finish the assignment. The value of m is equal to:
 - (1)150
- (2)125
- (3) 180
- (4) 160

Official answer NTA(1) Ans.

Sol.

Question ID: 87827055883

- Let $0 \le r \le n$. If ${}^{n+1}C_{r+1}$: ${}^{n}C_r$: ${}^{n-1}C_{r-1} = 55:35:21$, then 2n + 5r is equal to: 4.
 - (1)55
- (2)60
- (3)62
- (4)50

MATRIX JEE ACADEMY

Official answer NTA (4) Ans.

Sol.

Question ID: 87827055880

- If z_1 , z_2 are two distinct complex number such that $\left| \frac{z_1 2z_2}{\frac{1}{2} z_1 \overline{z}_2} \right| = 2$, then: 5.
 - (1) both z_1 and z_2 lie on the same circle
 - (2) z_1 lies on a circle of radius $\frac{1}{2}$ and z_2 lies on a circle of radius 1
 - (3) either z_1 lies on a circle of radius 1 or z_2 lies on a circle of radius $\frac{1}{2}$
 - (4) either z_1 lies on a circle of radius $\frac{1}{2}$ or z_2 lies on a circle of radius 1

Official answer NTA(3) Ans.

Sol.

Question ID: 87827055885

- If the function $f(x) = \left(\frac{1}{x}\right)^{2x}$; x > 0 attains the maximum value at $x = \frac{1}{e}$ then: 6.
 - $(1) e^{2\pi} < (2\pi)^e$
- (2) $e^{\pi} > \pi^{e}$
- (3) $e^{\pi} < \pi^{e}$
- (4) $(2e)^{\pi} > \pi^{(2e)}$

Ans. Official answer NTA (2)

Sol.

Question ID: 87827055896

- Let $\vec{a} = 6\hat{i} + \hat{j} \hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a is vector such that $|\vec{c}| \ge 6$, $\vec{a} \cdot \vec{c} = 6|\vec{c}|$, $|\vec{c} \vec{a}| = 2\sqrt{2}$ and the angle 7. between $\vec{a} \times \vec{b}$ and \vec{c} is 60°, then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to :

 - (1) $\frac{9}{2} \left(6 \sqrt{6} \right)$ (2) $\frac{9}{2} \left(6 + \sqrt{6} \right)$ (3) $\frac{3}{2} \sqrt{3}$
- $(4) \frac{3}{2} \sqrt{6}$

Official answer NTA(2) Ans.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Sol.

Question ID: 87827055895

Let $\vec{a} = 2\hat{i} + \hat{j} - \hat{k}$, $\vec{b} = ((\vec{a} \times (\hat{i} + \hat{j})) \times \hat{i}) \times \hat{i}$. Then the square of the projection of \vec{a} on \vec{b} is: 8.

- $(1)\frac{2}{3}$
- (2) $\frac{1}{5}$ (3) $\frac{1}{3}$
- (4)2

Official answer NTA (4) Ans.

Sol.

Question ID: 87827055897

If three letters can be posted to any one of the 5 different addresses, then the probability that the three letters 9. are posted to exactly two addresses is:

- $(1)\frac{6}{25}$

Official answer NTA (4) Ans.

Sol.

Question ID: 87827055887

Suppose for a differentiable function h, h(0)=0, h(1)=1 and h'(0)=h'(1)=2. If $g(x)=h(e^x)e^{h(x)}$, then 10. g'(0) is equal to:

- (1)3
- (2) 8
- (3)4
- (4)5

Ans.

Official answer NTA(3) Ans.

Question ID: 87827055892

11. If P(6, 1) be the orthocentre of the triangle whose vertices are A(5, -2), B(8, 3) and C(h, k), then the point C lies on the circle:

- (1) $x^2 + y^2 52 = 0$ (2) $x^2 + y^2 61 = 0$ (3) $x^2 + y^2 74 = 0$ (4) $x^2 + y^2 65 = 0$

Official answer NTA (4) Ans.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 06 April Shift-2

Sol.

Question ID: 87827055888

- 12. If the area of the region $\left\{ (x,y) : \frac{a}{x^2} \le y \le \frac{1}{x}, 1 \le x \le 2, 0 < a < 1 \right\}$ is $\left(\log_e 2 \right) \frac{1}{7}$ then the value of 7a 3 is equal to :
 - (1) 1
- (2)2
- (3)0
- (4) -1

Ans. Official answer NTA (4)

Sol.

Question ID: 87827055882

- 13. If all the words with or without meaning made using all the letters of the word "NAGPUR" are arranged as in a dictionary, then the word at 315th position in this arrangement is:
 - (1) NRAGUP
- (2) NRAPUG
- (3) NRAGPU
- (4) NRAPGU

Ans. Official answer NTA (4)

Sol.

Question ID: 87827055891

14. If the locus of the point, whose distances from the point (2, 1) and (1, 3) are in the ratio

5:4, is $ax^2 + by^2 + cxy + dx + ey + 170 = 0$, then the value of $a^2 + 2b + 3c + 4d + e$ is equal to:

- (1) 27
- (2)37
- (3) 5
- (4) 437

Ans. Official answer NTA(2)

Sol.

Question ID: 87827055890

- 15. Suppose the solution of the differential equation $\frac{dy}{dx} = \frac{(2+\alpha)x \beta y + 2}{\beta x 2\alpha y (\beta \gamma 4\alpha)}$ represents a circle passing through origin. Then the radius of this circle is:
 - $(1) \frac{\sqrt{17}}{2}$
- (2) 2
- $(3) \sqrt{17}$
- $(4)\frac{1}{2}$

MATRIX JEE ACADEMY

Official answer NTA(1) Ans.

Sol.

Question ID: 87827055886

- $\lim_{n\to\infty} \frac{\left(1^2-1\right)(n-1)+\left(2^2-2\right)(n-2)+\cdots+\left((n-1)^2-(n-1)\right)\cdot 1}{\left(1^3+2^3+\cdots+n^3\right)-\left(1^2+2^2+\cdots+n^2\right)} \text{ is equal to :}$ 16.
 - $(1)\frac{2}{2}$
- (2) $\frac{3}{4}$ (3) $\frac{1}{2}$

Official answer NTA (4) Ans.

Sol.

Question ID: 87827055894

- Let P(α , β , γ) be the image of the point Q(3, -3, 1) in the line $\frac{x-0}{1} = \frac{y-3}{1} = \frac{z-1}{-1}$ and R be the 17. point(2, 5, -1). If the area of the triangle PQR is λ and $\lambda^2 = 14$ K, then K is equal to :
 - (1)18
- (2)36
- (3)72
- (4)81

Official answer NTA(4) Ans.

Sol.

Question ID: 87827055878

- Let $f(x) = \frac{1}{7 \sin 5x}$ be a function defined on R. Then the range of the function f(x) is equal to: 18.

- $(1) \left[\frac{1}{8}, \frac{1}{6} \right] \qquad (2) \left[\frac{1}{7}, \frac{1}{5} \right] \qquad (3) \left[\frac{1}{8}, \frac{1}{5} \right] \qquad (4) \left[\frac{1}{7}, \frac{1}{6} \right]$

Official answer NTA(1) Ans.

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 06 April Shift-2

Question ID: 87827055879

- 19. Let $A = \{1, 2, 3, 4, 5\}$. Let R be a relation on A defined by xRy if and only if $4x \le 5y$. Let m be the number of elements in R and n be the minimum number of elements from A × A that are required to be added to R to make it a symmetric relation. Then m + n is equal to:
 - (1)26
- (2)25
- (3)23
- (4)24

Ans. Official answer NTA(2)

Sol.

Question ID: 87827055889

- If $\int \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx = \frac{1}{12} \tan^{-1}(3 \tan x) + \text{constant}$, then the maximum value of $a \sin x + b \cos x$, is: 20.
 - $(1) \sqrt{40}$
- (2) $\sqrt{42}$
- $(3) \sqrt{39}$
- $(4) \sqrt{41}$

Official answer NTA(1) Ans.

Sol.

SECTION - B

Question ID: 87827055899

21. If the system of equations

$$2x + 7y + \lambda z = 3$$
$$3x + 2y + 5z = 4$$

$$3x + 2y + 5z = 4$$

$$x + \mu v + 32z = -1$$

has infinitely many solutions, then $(\lambda - \mu)$ is equal to _____.

Official answer NTA (38) Ans.

Sol.

Question ID: 87827055902

22. Let [t] denote the largest integer less than or equal to t. If

$$\int_{0}^{3} \left[\left[x^{2} \right] + \left[\frac{x^{2}}{2} \right] \right] dx = a + b\sqrt{2} - \sqrt{3} - \sqrt{5} + c\sqrt{6} - \sqrt{7}, \text{ where a, b, c } \in \mathbb{Z}, \text{ then } a + b + c \text{ is equal to}$$

Official answer NTA (23) Ans.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 06 April Shift-2

Sol.

Question ID: 87827055901

23. Let [t] denote the greatest integer less than or equal to t. Let $f:[0,\infty) \to R$ be a function defined by $f(x) = \left[\frac{x}{2} + 3\right] - \left[\sqrt{x}\right].$ Let S be the set of all points in the interval [0, 8] at which f is not continuous. Then $\sum_{a \in S} a \text{ is equal to } \underline{\hspace{1cm}}.$

Ans. Official answer NTA(17)

Sol.

Question ID: 87827055903

24. If the solution y(x) of the given differential equation $(e^y + 1) \cos x dx + e^y \sin x dy = 0$ passes through the point $\left(\frac{\pi}{2}, 0\right)$, then the value of $e^{y\left(\frac{\pi}{6}\right)}$ is equal to _____.

Ans. Official answer NTA(3)

Sol.

Question ID: 87827055907

25. In a triangle ABC, BC = 7, AC = 8, AB = $\alpha \in \mathbb{N}$ and $\cos A = \frac{2}{3}$. If 49 $\cos(3C) + 42 = \frac{m}{n}$, where $\gcd(m, n) = 1$, then m + n is equal to _____.

Ans. Official answer NTA (39)

Sol.

Question ID: 87827055900

26. If $S(x) = (1+x) + 2(1+x)^2 + 3(1+x)^3 + \dots + 60(1+x)^{60}$, $x \ne 0$, and $(60)^2 S(60) = a(b)^b + b$, where a, $b \in \mathbb{N}$, then (a+b) equal to _____.

Ans. Official answer NTA (3660)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 06 April Shift-2

Question ID: 87827055906

27. From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable X denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of X is $\frac{m}{n}$, where gcd(m, n) = 1, then n - m is equal to _____.

Ans. Official answer NTA(71)

Sol.

Question ID: 87827055905

28. If the shortest distance between the lines $\frac{x-\lambda}{3} = \frac{y-2}{-1} = \frac{z-1}{1}$ and $\frac{x+2}{-3} = \frac{y+5}{2} = \frac{z-4}{4}$ is $\frac{44}{\sqrt{30}}$, then the largest possible value of $|\lambda|$ is equal to ______.

Ans. Official answer NTA (43)

Sol.

Question ID: 87827055898

29. Let α , β be roots of $x^2 + \sqrt{2}x - 8 = 0$. If $U_n = \alpha^n + \beta^n$, then $\frac{U_{10} + \sqrt{2}U_9}{2U_8}$ is equal to _____.

Ans. Official answer NTA (4)

Sol.

Question ID: 87827055904

The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $x = \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y - \sqrt{3}x + \sqrt{3} = 0$ touch this hyperbola at (x_0, y_0) . If m is the product of the focal distances of the point (x_0, y_0) , then $4e^2 + m$ is equal to _____.

Ans. Official answer NTA(61)

Sol.

MATRIX JEE ACADEMY