JEE Main April 2025 Question Paper With Text Solution 04 April | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 04 April Shift-2

JEE MAIN APRIL 2025 | 04TH APRIL SHIFT-2

SECTION - A

Question ID: 603421766

1.	Let f be a differentiable function on R such that $f(2) = 1$,	f'(2) = 4. Le	et $\lim_{x \to 0} (f(2+x))^{3/x} =$	\boldsymbol{e}^{α}
1.	Let 1 be a differentiable function on K such that $I(2) = 1$,	1(2)-4. L	$\lim_{y\to 0} (1(2+x)) =$	C

Then the number of times the curve $y = 4x^3 - 4x^2 - 4(\alpha - 7)x - \alpha$ meets x-axis is:

- (1)2
- (2) 1
- (3)3
- (4)0

Ans. Official answer NTA(1)

Sol.

Question ID: 603421753

- 2. Let the product of $\omega_1 = (8+i)\sin\theta + (7+4i)\cos\theta$ and $\omega_2 = (1+8i)\sin\theta + (4+7i)\cos\theta$ be $\alpha+i\beta, i=\sqrt{-1}$. Let p and q be the maximum and the minimum values of $\alpha+\beta$ respectively. Then p+q is equal to :
 - (1) 160
- (2)150
- (3)140
- (4)130

Ans. Official answer NTA(4)

Sol.

Question ID: 603421751

- 3. Let the domains of the function $f(x) = \log_4 \log_3 \log_7 \left(8 \log_2 \left(x^2 + 4x + 5\right)\right)$ and $g(x) = \sin^{-1} \left(\frac{7x + 10}{x 2}\right)$ be (α, β) and $[\gamma, \delta]$, respectively. Then $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ is equal to :
 - (1) 13
- (2) 15
- (3) 14
- (4) 16

Ans. Official answer NTA(2)

Sol.

Question ID: 603421767

- 4. Let a > 0. If the function $f(x) = 6x^3 45ax^2 + 108 a^2x + 1$ attains its local maximum and minimum values at the points x_1 and x_2 respectively such that x_1 , $x_2 = 54$, then $a + x_1 + x_2$ is equal to:
 - (1) 15
- (2) 13
- (3)24
- (4) 18

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 04 April Shift-2

Official answer NTA(4) Ans.

Sol.

Question ID: 603421768

- Let $f(x) + 2f(\frac{1}{x}) = x^2 + 5$ and $2g(x) 3g(\frac{1}{2}) = x, x > 0$. If $\alpha = \int_1^2 f(x) dx$, and $\beta = \int_1^2 g(x) dx$, then the 5. value of $9\alpha + \beta$ is:
 - (1)0
- (2) 10
- (3)11
- (4)1

Official answer NTA(3) Ans.

Sol.

Question ID: 603421770

- If a curve y = y(x) passes through the point $\left(1, \frac{\pi}{2}\right)$ and satisfies the differential equation 6. $(7x^4 \cot y - e^x \csc y) \frac{dx}{dy} = x^5, x \ge 1$, then at x = 2, the value of cosy is:

 - (1) $\frac{2e^2 e}{64}$ (2) $\frac{2e^2 + e}{128}$ (3) $\frac{2e^2 e}{128}$ (4) $\frac{2e^2 + e}{64}$

Official answer NTA(3) Ans.

Sol.

Question ID: 603421757

- If $1^2 \cdot \binom{15}{1} + 2^2 \cdot \binom{15}{2} + 3^2 \cdot \binom{15}{3} + \dots + 15^2 \cdot \binom{15}{15} = 2^m \cdot 3^n \cdot 5^k$, where $m, n, k \in \mathbb{N}$, then m + n + k is 7. equal to:
 - (1)20
- (2)19
- (3)18
- (4)21

Official answer NTA(2) Ans.

Sol.

Question ID: 603421752

Let $A = \{-3, -2, -1, 0, 1, 2, 3\}$ and R be a relation on A defined by xRy if and only if $2x - y \in \{0, 1\}$. Let *l* be 8. the number of elements in R. Let m and n be the minimum number of elements required to be added in R to

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 04 April Shift-2

make it reflexive and	symmetric relations.	respectively.	Then $l + m + n$ is equal to :
	~ J,		

(1)15

(2)16

(3) 17

(4)18

Ans. Official answer NTA(3)

Sol.

Question ID: 603421765

9. Let A be the point of intersection of the lines $L_1: \frac{x-7}{1} = \frac{y-5}{0} = \frac{z-3}{-1}$ and $L_2: \frac{x-1}{3} = \frac{y+3}{4} = \frac{z+7}{5}$. Let B and C be the points on the lines L_1 and L_2 respectively such that $AB = AC = \sqrt{15}$. Then the square of the area of the triangle ABC is:

(1)57

(2)63

(3)60

(4)54

Ans. Official answer NTA(4)

Sol.

Question ID: 603421756

10. Consider two sets A and B, each containing three numbers in A.P. Let the sum and the product of the elements of A be 36 and p respectively and the sum and the product of the elements of B be 36 and q respectively. Let d and D be the common differences of AP's in A and B respectively such that D = d + 3, d > 0. If $\frac{p+q}{p-q} = \frac{19}{5}$. then p-q is equal to:

(1)600

(2)540

(3)450

(4)630

Ans. Official answer NTA(2)

Sol.

Question ID: 603421759

11. The axis of a parabola is the line y = x and its vertex and focus are in the first quadrant at distances $\sqrt{2}$ and $2\sqrt{2}$ units from the origin, respectively. If the point (1, k) lies on the parabola, then a possible value of k is:

(1)4

(2)9

(3)8

(4)3

Ans. Official answer NTA(2)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 04 April Shift-2

Question ID: 603421769

12. A line passing through the point A(-2, 0), touches the parabola P: $y^2 = x - 2$ at the point B in the first quadrant. The area, of the region bounded by the line AB, parabola P and the x-axis, is:

(1)2

(2)3

 $(3)\frac{8}{3}$

 $(4)\frac{7}{3}$

Ans. Official answer NTA(3)

Sol.

Question ID: 603421758

13. Let the mean and the standard deviation of the observation 2, 3, 3, 4, 5, 7, a, b be 4 and $\sqrt{2}$ respectively. Then the mean deviation about the mode of these observations is:

 $(1)\frac{3}{4}$

(2) $\frac{1}{2}$

(3) 1

(4) 2

Ans. Official answer NTA(3)

Sol.

Question ID: 603421762

Let the sum of the focal distances of the point P(4, 3) on the hyperbola H: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be $8\sqrt{\frac{5}{3}}$. If for H, the length of the latus rectum is l and the product of the focal distances of the point P is m, then $9l^2 + 6m$ is equal to:

(1) 186

(2)187

(3)184

(4) 185

Ans. Official answer NTA(4)

Sol.

Question ID: 603421754

15. Let the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ satisfy $A^n = A^{n-2} + A^2 - I$ for $n \ge 3$. Then the sum of all the elements of A^{50} is :

(1)39

(2)52

(3)53

(4)44

Ans. Official answer NTA(3)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 04 April Shift-2

Sol.

Question ID: 603421760

- Let for two distinct values of p the lines y = x + p touch the ellipse $E: \frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$ at the points A and B. Let 16. the line y = x intersect E at the points C and D. Then the area of the quadrilateral ABCD is equal to:
 - (1)36
- (2)48
- (3)24
- (4)20

Official answer NTA(3) Ans.

Sol.

Question ID: 603421764

- Let the values of p, for which the shortest distance between the lines $\frac{x+1}{3} = \frac{y}{4} = \frac{z}{5}$ and 17. $\vec{r} = (p\hat{i} + 2\hat{j} + \hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$ is $\frac{1}{\sqrt{6}}$, be a, b, (a < b). Then the length of the latus rectum of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is:

 - $(1)\frac{2}{3}$
- (2)18
- (3)9
- $(4) \frac{3}{2}$

Official answer NTA(1) Ans.

Sol.

Question ID: 603421761

- The centre of a circle C is at the centre of the ellipse E: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b. Let C pass through the foci F_1 and 18. F₂ of E such that the circle C and the ellipse E intersect at four points. Let P be one of these four points. If the area of the triangle PF, F, is 30 and the length of the major axis of E is 17, then the distance between the foci of E is:
 - (1) 13
- $(2) \frac{13}{2}$
- (3)12
- (4)26

Official answer NTA(1) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 04 April Shift-2

Question ID: 603421763

The sum of the infinite series $\cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}\left(\frac{19}{4}\right) + \cot^{-1}\left(\frac{39}{4}\right) + \cot^{-1}\left(\frac{67}{4}\right) + \dots$ is: 19.

$$(1) \frac{\pi}{2} - \cot^{-1}\left(\frac{1}{2}\right) \qquad (2) \frac{\pi}{2} - \tan^{-1}\left(\frac{1}{2}\right) \qquad (3) \frac{\pi}{2} + \tan^{-1}\left(\frac{1}{2}\right) \qquad (4) \frac{\pi}{2} + \cot^{-1}\left(\frac{1}{2}\right)$$

(2)
$$\frac{\pi}{2} - \tan^{-1} \left(\frac{1}{2} \right)$$

(3)
$$\frac{\pi}{2} + \tan^{-1} \left(\frac{1}{2} \right)$$

(4)
$$\frac{\pi}{2} + \cot^{-1}\left(\frac{1}{2}\right)$$

Official answer NTA(2) Ans.

Sol.

Question ID: 603421755

If the sum of the first 20 terms of the series $\frac{4 \cdot 1}{4 + 3 \cdot 1^2 + 1^4} + \frac{4 \cdot 2}{4 + 3 \cdot 2^2 + 2^4} + \frac{4 \cdot 3}{4 + 3 \cdot 3^2 + 3^4} + \frac{4 \cdot 4}{4 + 3 \cdot 4^2 + 4^4} + \dots$ 20. is $\frac{m}{}$, where m and n are coprime, then m + n is equal to :

(1)423

(2)422

(3)420

(4)421

Official answer NTA(4) Ans.

Sol.

SECTION - B

Question ID: 603421772

21. Let m and n, $(m \le n)$, be two 2-digit numbers. Then the total numbers of pairs (m, n), such that gcd(m, n) = 6,

Official answer NTA (64) Ans.

Sol.

Question ID: 603421774

Let the three sides of a triangle ABC be given by the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$. Let G be 22. the centroid of the triangle ABC. Then $6(|\overrightarrow{AG}|^2 + |\overrightarrow{BG}|^2 + |\overrightarrow{CG}|^2)$ is equal to _____.

Official answer NTA(164) Ans.

Sol.

Question ID: 603421771

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 04 April Shift-2

23. If α is a root of the equation $x^2 + x + 1 = 0$ and $\sum_{k=1}^{n} \left(\alpha^k + \frac{1}{\alpha^k} \right)^2 = 20$, then n is equal to _____.

Ans. Official answer NTA(11)

Sol.

Question ID: 603421773

A card from a pack of 52 cards is lost. From the remaining 51 cards, n cards are drawn and are found to be spades. If the probability of the lost card to be a spade is $\frac{11}{50}$, then n is equal to _____.

Ans. Official answer NTA(2)

Sol.

Question ID: 603421775

25. If
$$\int \frac{\left(\sqrt{1+x^2}+x\right)^{10}}{\left(\sqrt{1+x^2}-x\right)^9} dx = \frac{1}{m} \left(\left(\sqrt{1+x^2}+x\right)^n \left(n\sqrt{1+x^2}-x\right)\right) + C \text{ where C is the constant of integration and }$$

 $m, n \in \mathbb{N}$, then m + n is equal to

Ans. Official answer NTA (379)

Sol.