# JEE Main April 2024 Question Paper With Text Solution 04 April | Shift-2

# **MATHEMATICS**



JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

## **IEE MAIN APRIL 2024 | 04 APRIL SHIFT-2**

### **SECTION - A**

Question ID: 68019113798

| 1  | The value of $\frac{1\times 2^2 + 2\times 3^2 + + 100\times (101)^2}{1}$ is                                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------------|
| 1. | The value of $\frac{1 \times 2 + 2 \times 3 + \dots + 100^2 \times 101}{1^2 \times 2 + 2^2 \times 3 + \dots + 100^2 \times 101}$ is |

- $(1) \frac{31}{30}$

Official answer NTA (4) Ans.

Sol.

Question ID: 68019113797

- If the coefficients of  $x^4$ ,  $x^5$  and  $x^6$  in the expansion of  $(1 + x)^n$  are in the arithmetic progression, then the 2. maximum value of n is:
  - (1)28
- (2)7
- (3)21
- (4) 14

Official answer NTA (4) Ans.

Sol.

Question ID: 68019113813

- 3. Given that the inverse trigonometric function assumes principal values only. Let x, y be any two real numbers in [-1,1] such that  $\cos^{-1}x - \sin^{-1}y = \alpha$ ,  $\frac{-\pi}{2} \le \alpha \le \pi$ . Then the minimum value of  $x^2 + y^2 + 2xy \sin \alpha$  is:
  - (1) 1
- (2)  $\frac{1}{2}$  (3)  $\frac{-1}{2}$
- (4)0

Official answer NTA (4) Ans.

Sol.

Question ID: 68019113811

- For  $\lambda > 0$ , let  $\theta$  be the angle between the vectors  $\vec{a} = \hat{i} + \lambda \hat{j} 3\hat{k}$  and  $\vec{b} = 3\hat{i} \hat{j} + 2\hat{k}$ . If the vectors  $\vec{a} + \vec{b}$  and 4.  $\vec{a}-\vec{b}$  are mutually perpendicular, then the value of  $(14\cos\theta)^2$  is equal to:
  - (1)20
- (2)25
- (3)40
- (4)50

### **MATRIX JEE ACADEMY**

### **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 04 April Shift-2

**Ans.** Official answer NTA(2)

Sol.

Question ID: 68019113800

5. Let  $f(x) = 3\sqrt{x-2} + \sqrt{4-x}$  beareal valued function. If  $\alpha$  and  $\beta$  are respectively the minimum and the maximum values of f, then  $\alpha^2 + 2\beta^2$  is equal to:

(1)24

(2)38

(3)44

(4)42

**Ans.** Official answer NTA (4)

Sol.

Question ID: 68019113807

Consider a hyperbola H having centre at the origin and foci on the x-axis. Let  $C_1$  be the circle touching the hyperbola H and having the centre at the origin. Let  $C_2$  be the circle touching the hyperbola H at its vertex and having the centre at one of its foci. If areas (in sq units) of  $C_1$  and  $C_2$  are  $36\pi$  and  $4\pi$ , respectively, then the length (in units) of latus rectum of H is:

 $(1)\frac{10}{3}$ 

(2)  $\frac{14}{3}$ 

 $(3)\frac{11}{3}$ 

 $(4) \frac{28}{3}$ 

Ans. Official answer NTA(4)

Sol.

Question ID: 68019113803

7. If the value of the integral  $\int_{-1}^{1} \frac{\cos \alpha x}{1+3^x} dx$  is  $\frac{2}{\pi}$ . Then, a value of  $\alpha$  is:

 $(1)\frac{\pi}{6}$ 

 $(2) \frac{\pi}{4}$ 

 $(3) \frac{\pi}{2}$ 

(4)  $\frac{\pi}{3}$ 

**Ans.** Official answer NTA(3)

Sol.

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 04 April Shift-2

Question ID: 68019113806

Let C be a circle with radius  $\sqrt{10}$  units and centre at the origin. Let the line x + y = 2 intersects the circle C at 8. the points P and Q. Let MN be a chord of C of length 2 unit and slope –1. Then, a distance (in units) between the chord PQ and the chord MN is:

- $(1) \sqrt{2} + 1$
- (2)  $\sqrt{2} 1$
- (3)  $3-\sqrt{2}$
- $(4) 2 \sqrt{3}$

Official answer NTA(3) Ans.

Sol.

Question ID: 68019113809

Let P be the point of intersection of the lines  $\frac{x-2}{1} = \frac{y-4}{5} = \frac{z-2}{1}$  and  $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z-3}{2}$ . Then, the 9. shortest distance of P from the line 4x = 2y = z is:

- $(1) \frac{6\sqrt{14}}{7}$
- (2)  $\frac{3\sqrt{14}}{7}$

Ans. Official answer NTA(2)

Sol.

Question ID: 68019113808

Let PQ be a chord of the parabola  $y^2 = 12x$  and the midpoint of PQ be at (4, 1). Then, which of the following 10. points lies on the line passing through the points P and Q?

- (1)(3,-3)
- (2)  $\left(\frac{3}{2}, -16\right)$  (3)  $\left(\frac{1}{2}, -20\right)$  (4) (2, -9)

Ans.

Official answer NTA(3) Ans.

Question ID: 68019113795

The area (in sq. units) of the region  $S = \{z \in C : |z-1| \le 2; (z+\overline{z}) + i(z-\overline{z}) \le 2, Im(z) \ge 0\}$  is: 11.

- $(1) \frac{7\pi}{4}$
- (2)  $\frac{7\pi}{2}$  (3)  $\frac{17\pi}{8}$  (4)  $\frac{3\pi}{2}$

Official answer NTA (4) Ans.

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 04 April Shift-2

Sol.

Question ID: 68019113801

12. If the function  $f(x) = \begin{cases} \frac{72^x - 9^x - 8^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ a \log_e 2 \log_e 3, & x = 0 \end{cases}$  is continuous at x = 0, then the value of  $a^2$  is equal to:

- (1)1152
- (2) 1250
- (3)746
- (4)968

**Ans.** Official answer NTA(1)

Sol.

Question ID: 68019113794

13. Let a relation R on  $N \times N$  be defined as :

 $(x_1, y_1) R(x_2, y_2)$  if and only if  $x_1 \le x_2$ ,  $y_1 \le y_2$ .

Consider the two statements:

- (I) R is reflexive but not symmetric.
- (II) R is transitive.

Then which of the following is true?

(1) Only (I) is correct.

- (2) Only (II) is correct.
- (3) Neither (I) nor (II) is correct.
- (4) Both (I) and (II) are correct.

**Ans.** Official answer NTA(1)

Sol.

Question ID: 68019113799

14. Let three real numbers a, b, c be in arithmetic progression and a + 1, b, c + 3 be in geometric progression. If a > 10 and the arithmetic mean of a, b and c is 8, then the cube of the geometric mean of a, b and c is :

- (1)316
- (2)312
- (3)128
- (4)120

**Ans.** Official answer NTA (4)

Sol.

**MATRIX JEE ACADEMY** 

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 04 April Shift-2

Question ID: 68019113802

Let  $f(x) = \int_{0}^{x} (t + \sin(1 - e^{t})) dt$ ,  $x \in R$ . Then,  $\lim_{x \to 0} \frac{f(x)}{x^{3}}$  is equal to: 15.

- $(1)\frac{1}{6}$
- $(2) -\frac{1}{6} \qquad (3) -\frac{2}{3} \qquad (4) \frac{2}{3}$

Official answer NTA(2) Ans.

Sol.

Question ID: 68019113796

Let  $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$  and  $B = I + adj(A) + (adj A)^2 + \dots + (adj A)^{10}$ . Then, the sum of all the elements of the 16. matrix B is:

- (1)-110
- (2)22
- (3) 124
- (4) 88

Official answer NTA (4) Ans.

Sol.

Question ID: 68019113804

17. The are (in sq. units) of the region described by  $\{(x, y) : y^2 \le 2x, \text{ and } y \ge 4x - 1\}$  is:

- $(1)\frac{8}{9}$

- $(3) \frac{11}{12} \qquad (4) \frac{11}{32}$

Official answer NTA(2) Ans.

Sol.

Question ID: 68019113805

Let y = y(x) be the solution of the differential equation  $(x^2 + 4)^2 dy + (2x^3y + 8xy - 2)dx = 0$ . If y(0) = 0, then 18. y(2) is equal to:

- $(1) \frac{\pi}{32}$
- (2)  $\frac{\pi}{16}$
- (3)  $2\pi$
- $(4) \frac{\pi}{\circ}$

Official answer NTA(1) Ans.

Sol.

**MATRIX JEE ACADEMY** 

## **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 04 April Shift-2

Question ID: 68019113810

19. Let  $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ ,  $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$  and  $\vec{c} = x\hat{i} + 2\hat{j} + 3\hat{k}$ ,  $x \in R$ . If  $\vec{d}$  is the unit vector in the direction of  $\vec{b} + \vec{c}$  such that  $\vec{a} \cdot \vec{d} = 1$ , then  $(\vec{a} \times \vec{b}) \cdot \vec{c}$  is equal to:

- (1)11
- (2)3

- (3)6
- (4)9

**Ans.** Official answer NTA(1)

Sol.

Question ID: 68019113812

20. If the mean of the following probability distribution of a random variable X:

| X    | 0 | 2  | 4     | 6  | 8  |
|------|---|----|-------|----|----|
| P(X) | a | 2a | a + b | 2b | 3b |

is  $\frac{46}{9}$ , then the variance of the distribution is:

- $(1) \frac{173}{27}$
- $(2)\frac{566}{81}$
- $(3) \frac{581}{81}$
- $(4) \frac{151}{27}$

**Ans.** Official answer NTA(2)

Sol.

**SECTION - B** 

Question ID: 68019113822

- Consider a line L passing through the points P(1,2,1) and Q(2,1,-1). If the mirror image of the point A(2,2,2) in the line L is  $(\alpha, \beta, \gamma)$ , then  $\alpha + \beta + 6\gamma$  is equal to \_\_\_\_\_.
- **Ans.** Official answer NTA(6)

Sol.

Question ID: 68019113816

22. Let A be a 2 × 2 symmetric matrix such that  $A\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$  and the determinant of A be 1. If  $A^{-1} = \alpha A + \beta I$ , where I is an identity matrix of order 2 × 2, then  $\alpha + \beta$  equals \_\_\_\_\_.

**Ans.** Official answer NTA(5)

### **MATRIX JEE ACADEMY**

### **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 04 April Shift-2

Sol.

Question ID: 68019113819

23. If  $\int \cos ec^5 x dx = \alpha \cot x \csc \left( \cos ec^2 x + \frac{3}{2} \right) + \beta \log_e \left| \tan \frac{x}{2} \right| + C$  where  $\alpha, \beta \in R$  and C is the constant integration, then the value of  $8(\alpha + \beta)$  equals

**Ans.** Official answer NTA(1)

Sol.

Question ID: 68019113814

24. Consider the function  $f: R \to R$  defined by  $f(x) = \frac{2x}{\sqrt{1+9x^2}}$ . If the composition of  $f(x) = \frac{2^{10}x}{\sqrt{1+9\alpha x^2}}$ , then the value of  $\sqrt{3\alpha+1}$  is equal to \_\_\_\_\_.

**Ans.** Official answer NTA (1024)

Sol.

Question ID: 68019113817

25. There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each grooup, then the number of ways of selecting 4 men and 4 women is \_\_\_\_\_.

**Ans.** Official answer NTA (5626)

Sol.

Question ID: 68019113823

26. In a tournament, a team plays 10 matches with probabilities of winning and losing each match as  $\frac{1}{3}$  and  $\frac{2}{3}$  respectively. Let x be the number of matches that the team wins, and y be the number of matches that team loses. If the probability  $P(|x-y| \le 2)$  is p, then  $3^9$ p equals \_\_\_\_\_\_.

Ans. Official answer NTA (8288)

### **MATRIX JEE ACADEMY**

### **Question Paper With Text Solution (Mathematics)**

JEE Main April 2024 | 04 April Shift-2

Sol.

Question ID: 68019113820

27. Let y = y(x) be the solution of the differential equation  $(x + y + 2)^2 dx = dy$ ; y(0) = -2. Let the maximum and minimum values of the function y = y(x) in  $\left[0, \frac{\pi}{3}\right]$  be  $\alpha$  and  $\beta$ , respectively. If  $\left(3\alpha + \pi\right)^2 + \beta^2 = \gamma + \delta\sqrt{3}$ ,  $\gamma, \delta \in \mathbb{Z}$ , then  $\gamma + \delta$  equals \_\_\_\_\_\_.

**Ans.** Official answer NTA(31)

Sol.

Question ID: 68019113815

28. Let  $S = \{\sin^2 2\theta : (\sin^4 \theta + \cos^4 \theta)x^2 + (\sin 2\theta)x + (\sin^6 \theta + \cos^6 \theta) = 0 \text{ has real roots}\}$ . If  $\alpha$  and  $\beta$  be the smallest and largest elements of the set S, respectively, then  $3((\alpha - 2)^2 + (\beta - 1)^2)$  equals

**Ans.** Official answer NTA (4)

Sol.

Question ID: 68019113818

29. Let  $f: R \to R$  be a thrice diffrentiable function such that f(0) = 0, f(1) = 1, f(2) = -1, f(3) = 2 and f(4) = -2. Then, the minimum number of zeroes of (3f'f'' + ff''')(x) is \_\_\_\_\_.

**Ans.** Official answer NTA(5)

Sol.

Question ID: 68019113821

30. Consider a triangle ABC having the vertices A(1,2), B( $\alpha$ ,  $\beta$ ) and C( $\gamma$ ,  $\delta$ ) and angles  $\angle$ ABC =  $\frac{\pi}{6}$  and  $\angle$ BAC =  $\frac{2\pi}{3}$ . If the points B and C lie on the line y = x + 4, then  $\alpha^2 + \gamma^2$  is equal to \_\_\_\_\_.

**Ans.** Official answer NTA(14)

Sol.

### **MATRIX JEE ACADEMY**