JEE Main April 2024 Question Paper With Text Solution 04 April | Shift-1

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN APRIL 2024 | 04 APRIL SHIFT-1

SECTION - A

Question ID: 87827055432

		1	2	α	
1.	Let $\alpha \in (0, \infty)$ and $A = $	1	0	1	. If $det(adj(2A-A^T)\cdot adj(A-2A^T)) = 2^8$, then $(det(A))^2$ is equal to 2^8
		0	1	2	

- (1)49
- (2) 16
- (3) 1
- (4)36

Ans. Official answer NTA(2)

Sol.

Question ID: 87827055440

2. One of the points of intersection of the curves $y = 1 + 3x - 2x^2$ and $y = \frac{1}{x}$ is $\left(\frac{1}{2}, 2\right)$. Let the area of the region enclosed by the curves be $\frac{1}{24} \left(\ell \sqrt{5} + m\right) - n \log_e \left(1 + \sqrt{5}\right)$, where ℓ , m, n \in N. Then ℓ + m + n is equal to : (1) 32 (2) 29 (3) 31 (4) 30

Ans. Official answer NTA (4)

Sol.

Question ID: 87827055439

- 3. Let the sum of the maximum and the minimum values of the function $f(x) = \frac{2x^2 3x + 8}{2x^2 + 3x + 8}$ be $\frac{m}{n}$, where gcd(m, n) = 1. Then m + n is equal to:
 - (1)182
- (2)217
- (3) 195
- (4)201

Ans. Official answer NTA (4)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 04 April Shift-1

Question ID: 87827055438

4. Let $f(x) = x^5 + 2e^{\frac{x}{4}}$ for all $x \in R$. Consider a function g(x) such that (gof)(x) = x for all $x \in R$. Then the value of 8g'(2) is:

(1) 8

(2)4

(3) 2

(4) 16

Ans. Official answer NTA (4)

Sol.

Question ID: 87827055434

5. There are 5 points P_1 , P_2 , P_3 , P_4 , P_5 on the side AB, excluding A and B, of a triangle ABC. Similarly, there are 6 points P_6 , P_7 ,, P_{11} on the side BC and 7 points P_{12} , P_{13} ,, P_{18} on the side CA of the triangle. The number of triangles, that can be formed using the points P_1 , P_2 ,, P_{18} as vertices is:

(1)751

(2)776

(3)771

(4)796

Ans. Official answer NTA(1)

Sol.

Question ID: 87827055446

6. Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn A is:

 $(1)\frac{5}{18}$

 $(2)\frac{7}{18}$

 $(3)\frac{5}{16}$

 $(4) \frac{4}{17}$

Ans. Official answer NTA(1)

Sol.

Question ID: 87827055444

7. Let the point, on the line passing through the points P(1, -2, 3) and Q(5, -4, 7), farther from the origin and at a distance of 9 units from the point P, be (α, β, γ) . Then $\alpha^2 + \beta^2 + \gamma^2$ is equal to :

(1)155

(2)150

(3) 165

(4) 160

Ans. Official answer NTA(1)

Sol.

MATRIX JEE ACADEMY

Question ID: 87827055435

- 8. The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}} + 5^{\frac{1}{3}}\right)^{15}$ is equal to:
 - (1) 6131
- (2)3133
- (3)931
- (4) 633

Ans. Official answer NTA(2)

Sol.

Question ID: 87827055447

- 9. Let $\alpha, \beta \in \mathbb{R}$. Let the mean and the variance of 6 observations $-3,4,7,-6, \alpha, \beta$ be 2 and 23 respectively. The mean deviation about the mean of these 6 observations is :
 - $(1)\frac{14}{3}$
- (2) $\frac{13}{3}$
- $(3) \frac{16}{3}$
- $(4) \frac{11}{3}$

Ans. Official answer NTA(2)

Sol.

Question ID: 87827055445

10. Let a unit vector which makes and angle of 60° with $2\hat{i} + 2\hat{j} - \hat{k}$ and an angle of 45° with $\hat{i} - \hat{k}$ be \vec{C} . Then

$$\vec{C} + \left(-\frac{1}{2}\hat{i} + \frac{1}{3\sqrt{2}}\hat{j} - \frac{\sqrt{2}}{3}\hat{k}\right)$$
 is:

$$(1)\left(\frac{1}{\sqrt{3}} + \frac{1}{2}\right)\hat{i} + \left(\frac{1}{\sqrt{3}} - \frac{1}{3\sqrt{2}}\right)\hat{j} + \left(\frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{3}\right)\hat{k}$$

(2)
$$\frac{\sqrt{2}}{3}\hat{i} + \frac{1}{3\sqrt{2}}\hat{j} - \frac{1}{2}\hat{k}$$

(3)
$$\frac{\sqrt{2}}{3}\hat{i} - \frac{1}{2}\hat{k}$$

$$(4) -\frac{\sqrt{2}}{3}\hat{\mathbf{i}} + \frac{\sqrt{2}}{3}\hat{\mathbf{j}} + \left(\frac{1}{2} + \frac{2\sqrt{2}}{3}\right)\hat{\mathbf{k}}$$

Ans. Official answer NTA(3)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 04 April Shift-1

Question ID: 87827055441

11. If the solution y = y(x) of the differential equation $(x^4 + 2x^3 + 3x^2 + 2x + 2)dy - (2x^2 + 2x + 3)dx = 0$ satisfies $y(-1) = -\frac{\pi}{4}$, then y(0) is equal to :

- (1) 0
- $(2) \frac{\pi}{12}$
- $(3) \frac{\pi}{2}$
- $(4) \frac{\pi}{4}$

Ans. Official answer NTA (4)

Sol.

Question ID: 87827055443

12. The vertices of a triangle are A(-1,3), B(-2,2) and C(3,-1). A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is:

(1)
$$x + y - (2 - \sqrt{2}) = 0$$

(2)
$$x - y - (2 + \sqrt{2}) = 0$$

(3)
$$-x + y - (2 - \sqrt{2}) = 0$$

(4)
$$x + y + (2 - \sqrt{2}) = 0$$

Ans. Official answer NTA(1)

Sol.

Question ID: 87827055431

13. If the system of equations

$$x + (\sqrt{2}\sin\alpha)y + (\sqrt{2}\cos\alpha)z = 0$$

$$x + (\cos \alpha)y + (\sin \alpha)z = 0$$

$$x + (\sin \alpha)y - (\cos \alpha)z = 0$$

has a non-trivial solution, then $\alpha \in \left(0, \frac{\pi}{2}\right)$ is equal to :

- $(1) \frac{3\pi}{4}$
- $(2) \frac{7\pi}{24}$
- (3) $\frac{11\pi}{24}$
- $(4) \frac{5\pi}{24}$

Ans. Official answer NTA(4)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 04 April Shift-1

Question ID: 87827055433

14. Let $f: R \to R$ be a function given by

$$f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2}, & x < 0 \\ \alpha, & x = 0 \\ \frac{\beta \sqrt{1 - \cos x}}{x}, & x > 0 \end{cases}$$

where $\alpha, \beta \in \mathbb{R}$. If f is continuous at x = 0, then $\alpha^2 + \beta^2$ is equal to :

- (1)6
- (2)48
- (3)3
- (4) 12

Ans. Official answer NTA (4)

Sol.

Question ID: 87827055436

15. Let the first three terms 2, p and q with $q \ne 2$, of a G.P. be respectively the 7^{th} , 8^{th} and 13^{th} terms of an A.P. If the 5^{th} term of the G.P. is the n^{th} term of the A.P., then n is equal to :

- (1) 163
- (2) 169
- (3) 151
- (4) 177

Ans. Official answer NTA(1)

Sol.

Question ID: 87827055428

16. If the domain of the function $\sin^{-1}\left(\frac{3x-22}{2x-19}\right) + \log_e\left(\frac{3x^2-8x+5}{x^2-3x-10}\right)$ is $(\alpha,\beta]$, then $3\alpha+10\beta$ is equal to :

- (1)97
- (2)98
- (3) 100
- (4)95

Ans. Official answer NTA(1)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 04 April Shift-1

Question ID: 87827055442

A square is inscribed in the circle $x^2 + y^2 - 10x - 6y + 30 = 0$. One side of this square is parallel to y = x + 3. 17. If (x_i, y_i) are the vertices of the square, then $\sum (x_i^2 + y_i^2)$ is equal to :

- (1)156
- (2)148
- (3)152
- (4) 160

Official answer NTA(3) Ans.

Sol.

Question ID: 87827055437

Let $f(x) =\begin{cases} -2, & -2 \le x \le 0 \\ x-2, & 0 < x \le 2 \end{cases}$ and h(x) = f(|x|) + |f(x)|. Then $\int_{-2}^{2} h(x) dx$ is equal to: 18.

(1)2

(2)6

Official answer NTA(1) Ans.

Sol.

Question ID: 87827055429

Let α and β be the sum and the product of all the non-zero solutions of the equation $(\overline{z})^2 + |z| = 0$, $z \in C$. 19. Then $4(\alpha^2 + \beta^2)$ is equal to :

- (1)2
- (2) 8
- (3)4
- (4)6

Official answer NTA(3) Ans.

Sol.

Question ID: 87827055430

If 2 and 6 are the roots of the equation $ax^2 + bx + 1 = 0$, then the quadratic equation, whose roots are $\frac{1}{2a+b}$ 20. and $\frac{1}{6a+b}$, is:

(1)
$$2x^2 + 11x + 12 = 0$$
 (2) $x^2 + 8x + 12 = 0$ (3) $4x^2 + 14x + 12 = 0$ (4) $x^2 + 10x + 16 = 0$

(3)
$$4x^2 + 14x + 12 = 0$$
 (4) $x^2 + 10x + 16 = 0$

Official answer NTA(2) Ans.

Sol.

MATRIX JEE ACADEMY

SECTION - B

Question ID: 87827055456

21. If the shortest distance between the lines $\frac{x+2}{2} = \frac{y+3}{3} = \frac{z-5}{4}$ and $\frac{x-3}{1} = \frac{y-2}{-3} = \frac{z+4}{2}$ is $\frac{38}{3\sqrt{5}}k$, and $\int_{0}^{k} \left[x^{2}\right] dx = \alpha - \sqrt{\alpha}$, where [x] denotes the greatest integer function, then $6\alpha^{3}$ is equal to ______.

Ans. Official answer NTA (48)

Sol.

Question ID: 87827055449

22. Let A be a 3 × 3 matrix of non-negative real elements such that $A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Then the maximum value of

det(A) is _____.

Ans. Official answer NTA (27)

Sol.

Question ID: 87827055451

23. If $\lim_{x \to 1} \frac{(5x+1)^{\frac{1}{3}} - (x+5)^{\frac{1}{3}}}{(2x+3)^{\frac{1}{2}} - (x+4)^{\frac{1}{2}}} = \frac{m\sqrt{5}}{n(2n)^{\frac{2}{3}}}$, where gcd(m, n) = 1, then 8m + 12n is equal to _____.

Ans. Official answer NTA (100)

Sol.

Question ID: 87827055452

24. If $\int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{1 + \sin x \cos x} dx = \frac{1}{a} \log_e \left(\frac{a}{3}\right) + \frac{\pi}{b\sqrt{3}}, \text{ where } a, b \in \mathbb{N}, \text{ then } a + b \text{ is equal to } \underline{\hspace{1cm}}.$

Ans. Official answer NTA(8)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 04 April Shift-1

Sol.

Question ID: 87827055454

- 25. Let A be a square matrix of order 2 such that |A| = 2 and the sum of its diagonal elements is -3. If the points (x, y) satisfying $A^2 + xA + yI = 0$ lie on a hyperbola, whose transverse axis is parallel to the x-axis, eccentricity is e and the length of the latus rectum is ℓ , then $e^4 + \ell^4$ is equal to
- **Ans.** Official answer NTA(25)
 Answer by Matrix is (Bonus)

Sol.

Question ID: 87827055457

- 26. Let ABC be a triangle of area $15\sqrt{2}$ and the vectors $\overrightarrow{AB} = \hat{i} + 2\hat{j} 7\hat{k}$, $\overrightarrow{BC} = a\hat{i} + b\hat{j} + c\hat{k}$ and $\overrightarrow{AC} = 6\hat{i} + d\hat{j} 2\hat{k}$, d > 0. Then the square of the length of the largest side of the triangle ABC is _____.
- **Ans.** Official answer NTA (54)

Sol.

Question ID: 87827055455

- 27. Let the length of the focal chord PQ of the parabola $y^2 = 12x$ be 15 units. If the distance of PQ from the origin is p, then $10p^2$ is equal to _____.
- **Ans.** Official answer NTA (72)

Sol.

Question ID: 87827055450

28. Let
$$a = 1 + \frac{{}^{2}C_{2}}{3!} + \frac{{}^{3}C_{2}}{4!} + \frac{{}^{4}C_{2}}{5!} + \dots$$

$$b = 1 + \frac{{}^{1}C_{0} + {}^{1}C_{1}}{1!} + \frac{{}^{2}C_{0} + {}^{2}C_{1} + {}^{2}C_{2}}{2!} + \frac{{}^{3}C_{0} + {}^{3}C_{1} + {}^{3}C_{2} + {}^{3}C_{3}}{3!} + \dots$$

Then
$$\frac{2b}{a^2}$$
 is equal to _____.

Ans. Official answer NTA (8)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2024 | 04 April Shift-1

Question ID: 87827055448

29.	In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130
	students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied
	Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied
	both Mathematics and Physics and 10 studied none of these subjects. Let m and n respectively be the least and
	the most number of students whose studied all the three subjects. Then $m + n$ is equal to $\qquad \qquad .$

Ans. Official answer NTA (45)

Sol.

Question ID: 87827055453

equal to _____.

Ans. Official answer NTA (7)

Sol.

