JEE Main January 2024 Question Paper With Text Solution 31 January | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

IEE MAIN JANUARY 2024 | 31TH JANUARY SHIFT-2

SECTION - A

Question ID: 4058591211

The shortest distance, between lines L_1 and L_2 , where $L_1: \frac{x-1}{2} = \frac{y+1}{2} = \frac{z+4}{2}$ and L_2 is the line, passing A 1. (-4, 4, 3), B (-1, 6, 3) and perpendicular to the line $\frac{x-3}{-2} = \frac{y}{3} = \frac{z-1}{1}$, is:

- (1) $\frac{141}{\sqrt{221}}$ (2) $\frac{42}{\sqrt{117}}$ (3) $\frac{24}{\sqrt{117}}$ (4) $\frac{121}{\sqrt{221}}$

Official answer NTA(1) Ans.

Sol.

Question ID: 4058591207

2. The temperature T (t) of a body at time t = 0 is 160° F and it decreases continuously as per the differential equation $\frac{dT}{dt} = -k(T-80)$, where K is is a positive constant. If $T(15) = 120^{\circ}F$, then T(45) is equal to :

- $(1) 80^{\circ} F$
- $(2) 85^{\circ} F$
- (3) 95° F
- (4) 90° F

Official answer NTA(4) Ans.

Sol.

Question ID: 4058591197

Let z_1 and z_2 be two complex numbers such that $z_1 + z_2 = 5$ and $z_1^3 + z_2^3 = 20 + 15i$. Then $|z_1^4 + z_2^4|$ equals: 3.

- (1) $30\sqrt{3}$
- (2) $25\sqrt{3}$
- $(3)\ 15\sqrt{15}$
- (4)75

Official answer NTA(4) Ans.

Sol.

Question ID: 4058591201

Let 2nd, 8th and 44th terms of a non-cosntant A. P. be respectively the 1st, 2nd and 3rd of a G.P. If the first terms 4. of a G.P. If the first term of the A.P. is 1, then the sum of its first 20 terms is is equal to:

- (1)990
- (2)980
- (3)960
- (4)970

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 31 January Shift-2

Ans. Official answer NTA(4)

Sol.

Question ID: 4058591202

5. Consider the function $f:(0,\infty)\to R$ defined by $f(x)=e^{-|\log_e x|}$. if m and n be respectively the number of points at which f is not continuous and f is not differentiable, then m+n is:

(1)2

(2)3

(3)0

(4)1

Ans. Official answer NTA (4)

Sol.

Question ID: 4058591205

6. The area of the region enclosed by the parabola $y = 4x - x^2$ and $3y = (x - 4)^2$ is equal to:

(1)32/9

(2)4

(3)6

(4)14/3

Ans. Official answer NTA(3)

Sol.

Question ID: 4058591206

7. Let $f, g: (0, \infty) \to \mathbb{R}$ be two functions defined by $f(x) = \int_{-x}^{x} (|t| - t^2) e^{-r^2} dt$ and $g(x) = \int_{0}^{x^2} t^{1/2} e^{-t} dt$. Then the value of $9(f(\sqrt{\log_e 9}) + (\sqrt{\log_e 9}))$ is equal to:

(1)9

(2)6

(3)10

(4)8

Ans. Official answer NTA(4)

Sol.

Question ID: 4058591204

8. Let a variable line passing through the centre of the circle $x^2 + y^2 - 16x - 4y = 0$, meet the positive co-ordinate axes at the points A and B. Then the minimum value of OA + OB, where O is the origin, is equal to:

(1)18

(2) 12

(3)24

(4)20

Ans. Official answer NTA(1)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 31 January Shift-2

Question ID: 4058591195

If the function $f:(-\infty,-1)\to(a,b)$ defined by $f(x)=e^{x^3-3x+1}$ is one -m one and onto, then the distance of 9. the point P (2b + 4, a + 2) from the line $x + e^{-3}y = 4$ is:

(1)
$$\sqrt{1+e^6}$$

(2)
$$2\sqrt{1+e^6}$$

(2)
$$2\sqrt{1+e^6}$$
 (3) $4\sqrt{1+e^6}$ (4) $3\sqrt{1+e^6}$

(4)
$$3\sqrt{1+e^6}$$

Official answer NTA(2) Ans.

Sol.

Question ID: 4058591196

The number of solutions, of the equation $e^{\sin x} - 2e^{-\sin x} = 2$, is: 10.

(1)0

(2) more than 2

(3)2

(4)1

Ans.

Official answer NTA(1) Ans.

Question ID: 4058591212

11. Let the mean and the variance of 6 observations a, b, 68, 44, 48, 60 be 55 and 194, respectively. If a > b, then a + 3b is:

(1)180

(2)210

(3)200

(4)190

Official answer NTA(1) Ans.

Sol.

Question ID: 4058591203

Let $f:\to R\to (0,\infty)$ be strictly increasing function such that $\lim_{x\to\infty}\frac{f'(7x)}{f(x)}=1$. Then, the value of of 12.

$$\lim_{x\to\infty} \left[\frac{f(5x)}{f(x)} = 1 \right]$$
 is equal to :

(1)7/5

(2)0

(3)1

(4)4

Official answer NTA(2) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 31 January Shift-2

Question ID: 4058591198

13. Let A be a 3×3 real matrix such that $A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, A \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = 4 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, A \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. Then, the system

$$(A-3I)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} has :$$

(1) no solution

(2) exactly two solutions

(3) infinitely many solutions

(4) unique solutions

Ans. Official answer NTA(4)

Sol.

Question ID: 4058591213

- 14. A coin is biased so that a head is twice as likely to occurs as a tail. If the coin is tossed 3 times, then the probability of getting two tails and one head is:
 - (1) 2/27
- (2) 1/27
- (3) 2/9
- (4) 1/9

Ans. Official answer NTA(3)

Sol.

Question ID: 4058591208

- Let P be a parabola with vertex (2, 3) and directrix 2x + y = 6. Let an ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b$, of eccentricity $\frac{1}{\sqrt{2}}$ pass through the focus of the parabola P. Then the square of the length of the latus rectum of
 - E is:
 - (1)656/25
- (2) 374/8
- (3)385/8
- (4) 512/5

Ans. Official answer NTA(1)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 31 January Shift-2

Question ID: 4058591199

The number of ways in which 21 identical apples can be distributed among three children such that each child 16. gets at least 2 apples is:

- (1)142
- (2)406
- (3) 136
- (4)130

Official answer NTA(3) Ans.

Sol.

Question ID: 4058591200

- $If for some \ m,n; \ ^{6}C_{m} + 2\Big(\ ^{6}C_{m+1} \Big) + \ ^{6}C_{m+2} > \ ^{8}C_{3} \ and \ ^{n-1}P_{3}; \ ^{n}P_{4} = 1:8, then \ ^{n}P_{m+1} + \ ^{n+1}C_{m} \ is equal to: \ (n-1)^{n}P_{m+1} + \ ^{n+1}C_{m} = 0$ 17.
 - (1)372
- (2)384
- (3)380
- (4)376

Official answer NTA(1) Ans.

Sol.

Question ID: 4058591210

Let (α, β, γ) be the mirror image of the point (2, 3, 5) in the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$. Then $2\alpha + 3\beta + 4\gamma$ 18. is equal to:

- (1)34
- (2)32
- (3)31
- (4)33

Official answer NTA(4) Ans.

Sol.

Question ID: 4058591214

if $a = \sin^{-1}(\sin(5))$ and $b = \cos^{-1}(\cos(5))$, then $a^2 + b^2$ is equal to : 19.

- $(1) 4\pi^2 + 25$
- (2) $4\pi^2 20\pi^2 + 50$ (3) $8\pi^2 40\pi^2 + 50$ (4) 25

Official answer NTA(3) Ans.

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 31 January Shift-2

Question ID: 4058591209

20. Let A(a, b)m, B (3, 4) and C (-6, -8) respectively denote the centroid, circumcentre and orthocentre of a triangle. Then the distance of the point P(2a + 3, 7b + 5) from the line 2x + 3y - 4 = 0 measured parallel to the line x - 2y - 1 = 0 is:

$$(1) \frac{17\sqrt{5}}{6}$$

(2)
$$\frac{17\sqrt{5}}{7}$$

$$(3) \frac{\sqrt{5}}{17}$$

(4)
$$\frac{15\sqrt{5}}{7}$$

Ans. Official answer NTA(2)

Sol.

SECTION - B

Question ID: 4058591216

21. Let A be a 3×3 matrix det (A) = 2. If $n = \det\left(\frac{\operatorname{adj}\left(\operatorname{adj}\left(\dots\left(\operatorname{adj}A\right)\right)\right)}{2024-\operatorname{times}}\right)$, then the remainder when n is divided by 9 is equal to _____.

Ans. Official answer NTA(7)

Sol.

Ouestion ID: 4058591222

Let A(-2, -1), B(1, 0), $C(\alpha, \beta)$ and (γ, δ) be the vertices of a parallelogram ABCD. If the point C lies on 2x - y = 5 and the point D lies on 3x - 2y = 6, then the value of $|\alpha + \beta + \gamma + \delta|$ is equal to _____.

Ans. Official answer NTA (32)

Sol.

Question ID: 4058591215

23. Let $A = \{1, 2, 3, ..., 100\}$. Let R be a relation on A defined $(x, y) \in R$ if and only if 2x = 3y. Let R_1 be a symmetric relation on A such that $R \subset R_1$ and the number of elements in R_1 is n. Then, the minimum value of n is ______.

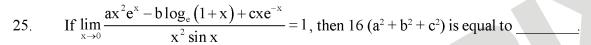
Ans. Official answer NTA (66)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 31 January Shift-2


Question ID: 4058591218

24. Let a, b, c be the lengths of three sides of a triangle satisfying the condition $(a^2 + b^2)x^2 - 2b(a+c)x + (b^2+c^2) = 0$. If the set of all possible values of x is the interval (α, β) , then $12(\alpha^2 + \beta^2)$ is equal to

Ans. Official answer NTA (36)

Sol.

Question ID: 4058591219

Ans. Official answer NTA(81)

Sol.

Question ID: 4058591223

A line passes through A (4, -6, -2) and B (16, -2, 4). Then point P (a, b, c), where a, b, c are non-negative integers, on the line AB lies at a distance of 21 units, from the point A. The distance between the points P (a, b, c) and Q (4, -12, 3) is equal to ______.

Ans. Official answer NTA(22)

Sol.

Question ID: 4058591224

27. Let $\vec{a} = 3\hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and \vec{c} be a vector such that $(\vec{a} + \vec{b}) \times \vec{c} = 2(\vec{a} \times \vec{b}) + 24\hat{j} - 6\hat{k}$ and $(\vec{a} - \vec{b} + \hat{i}) \cdot \vec{c} = -3$. Then is equal to _____.

Ans. Official answer NTA (38)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 31 January Shift-2

Question ID: 4058591220

28.
$$\left| \frac{120}{\pi^3} \int_0^{\pi} \frac{x^2 \sin x \cos x}{\sin^4 x + \cos^4 x} dx \right| \text{ is equal to } \underline{\hspace{1cm}}$$

Ans. Official answer NTA(15)

Sol.

Question ID: 4058591221

29. Let y = y(x) be the solution of the differential equation

$$\sec^2 x dx + \left(e^{2y} \tan^2 x + \tan x\right) dy = 0, 0 < x < \frac{\pi}{2}, y \left(\frac{\pi}{4}\right) = 0$$
. If $y \left(\frac{\pi}{6}\right) = \alpha$, then $e^{8\alpha}$ is equal to ______.

Ans. Official answer NTA(9)

Sol.

Question ID: 4058591217

30. Let the coefficient of x^r in the expansion of

$$\left(x+3\right)^{n-1} + \left(x+3\right)^{n-2} \left(x+2\right) + \left(x+3\right)^{n-3} \left(x+2\right)^2 + \dots + \left(x+2\right)^{n-1} \quad \text{be } \alpha_r. \ \ \text{If } \sum_{r=0}^n \alpha_r = \beta^n - \gamma^n, \beta, \gamma \in \mathbb{N} \ , \\ \text{then the value of } \beta^2 + \gamma^2 \ \text{equals} \ \underline{\hspace{1cm}}.$$

Ans. Official answer NTA(25)

Sol.