JEE Main January 2024 Question Paper With Text Solution 30 January | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE Main January 2024 | 30 January Shift-2

JEE MAIN JANUARY 2024 | 30TH JANUARY SHIFT-2

SECTION - A

Question ID: 4058591024

1.	Let $f: R \to R$ be defined as $f(x) = ae^{2x} + be^{x} + cx$. If $f(0) = -1$, $f'(\log_e 2) = 21$ and $\int_0^{\log_e 4} (f(x) - cx) dx = 1$	$\frac{39}{2}$
	then the value of $ a + b + c $ equals :	

- (1)12
- (2) 16
- (3)8
- (4) 10

Ans. Official answer NTA(3)

Sol.

Question ID: 4058591018

- 2. Consider the system of linear equations x + y + z = 5, $x + 2y + \lambda^2 z = 9$, $x + 3y + \lambda z = \mu$, where $\lambda, \mu \in \mathbb{R}$. Then, which of the following statement is NOT correct?
 - (1) System is consistent if $\lambda \neq 1$ and $\mu = 13$
 - (2) System has unique solution if $\lambda \neq 1$ and $\mu \neq 13$
 - (3) System is inconsistent if $\lambda = 1$ and $\mu \neq 13$
 - (4) System has infinite number of solutions if $\lambda = 1$ and $\mu = 13$

Ans. Official answer NTA(2)

Sol.

Question ID: 4058591034

- 3. Bag A contains 3 white, 7 red balls and Bag B contains 3 white, 2 red balls. One bag is selected at random and a ball is drawn from it. The probability of drawing the ball from the bag A, if the ball drawn is white, is:
 - $(1)\frac{1}{3}$
- $(2)\frac{1}{4}$
- $(3) \frac{3}{10}$
- $(4)\frac{1}{9}$

Ans. Official answer NTA(1)

Sol.

JEE Main January 2024 | 30 January Shift-2

Question ID: 4058591020

4. Let a and b be be two distinct positive real numbers. Let 11th term of a GP, whose first term is a and third term is b, is equal to pth term of another GP, whose first term is a and fifth term is b. Then p is equal to:

- (1)21
- (2)20
- (3)25
- (4)24

Ans. Official answer NTA(1)

Sol.

Question ID: 4058591017

5. Let $R = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix}$ be a non-zero 3×3 matrix, where

 $x \sin \theta = y \sin \left(\theta + \frac{2\pi}{3}\right) = z \sin \left(\theta + \frac{4\pi}{3}\right) \neq 0, \theta \in (0, 2\pi)$. For a square matrix M, let trace (M) denote the sum of all the diagonal entries of M. Then, among the statements:

- (I) Trace (R) = 0
- (II) If trace (adj(adj(R)) = 0, then R has exactly one non-zero entry.
- (1) Both (I) and (II) are true
- (2) Only (II) is true

(3) Only (I) is true

(4) Neither (I) nor (II) is true

Ans. Official answer NTA(2)

Sol.

Question ID: 4058591022

6. Let a and b be real constants such that the function f defined by $f(x) = \begin{cases} x^2 + 3x + a & , x \le 1 \\ bx + 2 & , x > 1 \end{cases}$ be differentiable

on R. Then, the value of $\int_{-2}^{2} f(x) dx$ equal :

- (1) 21
- $(2)\frac{15}{6}$
- (3) 17
- $(4) \frac{19}{6}$

Ans. Official answer NTA(3)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 30 January Shift-2

Question ID: 4058591026

7. Let y = f(x) be a thrice differentiable function in (-5, 5). Let the tangents to the curve y = f(x) at (1, f(1)) and (3, f(3)) make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive x-axis. If $27 \int_{1}^{3} \left(\left(f'(t) \right)^{2} + 1 \right) f''(t) dt = \alpha + \beta \sqrt{3}$ where α , β are integers, then the value of $\alpha + \beta$ equals:

- (1)26
- (2) -16
- (3)-14
- (4)36

Ans. Official answer NTA(1)

Sol.

Question ID: 4058591016

- 8. If z is a complex number, then the number of common roots of the equations $z^{1985} + z^{100} + 1 = 0$ and $z^3 + 2z^2 + 2z + 1 = 0$, is equal to:
 - (1)1
- (2)3
- (3)1
- (4)2

Ans. Official answer NTA(4)

Sol.

Question ID: 4058591029

- 9. Let P be a point on the hyperbola $H: \frac{x^2}{9} \frac{y^2}{4} = 1$, in the first quadrant such that the area of triangle formed by P and the two foci of H is $2\sqrt{13}$. Then, the square of the distance of P from the origin is:
 - (1)18
- (2)22
- (3)26
- (4)20

Ans. Official answer NTA(2)

Sol.

Question ID: 4058591031

- $\label{eq:local_$
 - (1)(1,7,-4)
- (2)(-1,-7,4)
- (3)(-1,7,4)
- (4)(1,-7,4)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 30 January Shift-2

Ans.

Ans. Official answer NTA(3)

Question ID: 4058591027

11. Let $f: R \to R$ be a function defined by $f(x) = \frac{x}{\left(1 + x^4\right)^{1/4}}$ and g(x) = f(f(f(x))). Then,

 $18\int_0^{\sqrt{2\sqrt{5}}} x^2 g(x) dx$ equal to:

- (1)42
- (2)33
- (3)36
- (4)39

Ans. Official answer NTA(4)

Sol.

Question ID: 4058591028

- Let $A(\alpha, 0)$ and $B(\beta, 0)$ be the points on the line 5x + 7y = 50. Let the point P divide the line segment AB internally in the ratio 7:3. Let 3x 25 = 0 be a directrix of the ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the corresponding focus be S. If from S, the perpendicular on the x-axis passes through P, then the length of the latus rectum of E is equal to:
 - $(1) \frac{32}{5}$
- (2) $\frac{32}{9}$
- $(3) \frac{25}{9}$
- $(4) \frac{25}{3}$

Ans. Official answer NTA(1)

Sol.

Question ID: 4058591019

- Suppose 2 p, p, 2α , α are the coefficients of four consecutive terms in the expansion of $(1 + x)^n$. Then the value of $p^2 \alpha^2 + 6\alpha + 2p$ equals :
 - (1)8
- (2)10
- (3)6
- (4)4

Ans. Official answer NTA(1)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 30 January Shift-2

Question ID: 4058591032

14. Let \vec{a} and \vec{b} be two vectors such that $|\vec{b}| = 1$ and $|\vec{b} \times \vec{a}| = 2$. Then $|(\vec{b} \times \vec{a}) - \vec{b}|^2$ is equal to :

- (1)3
- (2)1
- (3)5
- (4)4

Ans. Official answer NTA(3)

Sol.

Question ID: 4058591021

15. Let $f: \mathbb{R} - \{0\} \to \mathbb{R}$ be a function satisfying $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)}$ for all $x, y, f(y) \neq 0$. If f'(1) = 2024, then:

(1) xf'(x) + f(x) = 2024

(2) xf'(x) - 2024f(x) = 0

(3) xf'(x) + 2024f(x) = 0

(4) xf'(x) - 2023f(x) = 0

Ans. Official answer NTA(2)

Sol.

Question ID: 4058591033

16. Let $\vec{a} = \hat{i} + \alpha \hat{j} + \beta \hat{k}, \alpha, \beta \in \mathbb{R}$. Let a vector \vec{b} be such that the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$ and $\left|\vec{b}\right|^2 = 6$. If $\vec{a} \cdot \vec{b} = 3\sqrt{2}$, then the value of $\left(\alpha^2 + \beta^2\right) \left|\vec{a} \times \vec{b}\right|^2$ is :

- (1)75
- (2)95
- (3)85
- (4)90

Ans. Official answer NTA(4)

Sol.

Question ID: 4058591023

17. Let $f(x) = (x+3)^2(x-2)^3$, $x \in [-4,4]$. If M and m are the maximum and minimum values of f, respectively in [-4,4], then the value of M-m is :

- (1)392
- (2)600
- (3) 108
- (4)608

Ans. Official answer NTA(4)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 30 January Shift-2

Question ID: 4058591025

18. For $\alpha, \beta \in (0, \pi/2)$, let $3\sin(\alpha + \beta) = 2\sin(\alpha - \beta)$ and a real number k be such that $\tan \alpha = k \tan \beta$. Then the value of k is equal to:

 $(1) - \frac{2}{3}$

(2) 5

(3)-5

 $(4)\frac{2}{3}$

Ans. Official answer NTA(3)

Sol.

Question ID: 4058591030

19. If $x^2 - y^2 + 2hxy + 2gx + 2fy + c = 0$ is the locus of a point, which moves such that it is always equidistant from the lines x + 2y + 7 = 0 and 2x - y + 8 = 0, then the value of g + c + h - f equals:

(1)6

(2)8

(3)29

(4) 14

Ans. Official answer NTA(4)

Sol.

Question ID: 4058591015

20. If the domain of the function $f(x) = \log_e \left(\frac{2x+3}{4x^2+x-3} \right) + \cos^{-1} \left(\frac{2x-1}{x+2} \right)$ is $(\alpha, \beta]$ then the value of $5\beta - 4\alpha$ is equal to :

(1) 10

(2)9

(3)12

(4) 11

Ans. Official answer NTA(3)

JEE Main January 2024 | 30 January Shift-2

Sol.

SECTION - B

The number of real solutions of the equation $x(x^2 + 3|x| + 5|x - 1| + 6|x - 2|) = 0$ is ______

Ans. Official answer NTA(1)

Sol.

Question ID: 4058591043

22. Let a line passing through the point (-1, 2, 3) intersect the lines $L_1: \frac{x-1}{3} = \frac{y-2}{2} = \frac{z+1}{-2}$ at $M(\alpha, \beta, \gamma)$ and $L_2: \frac{x+2}{-3} = \frac{y-2}{-2} = \frac{z-1}{4}$ at N(a, b, c). Then the value of $\frac{(\alpha + \beta + \gamma)^2}{(a+b+c)^2}$ equal _____.

Ans. Official answer NTA (196)

Sol.

Question ID: 4058591040

The area of the region enclosed by the parabola $(y-2)^2 = x-1$, the line x-2y+4=0 and the positive coordinate axes is _____.

Ans. Official answer NTA(5)

Sol.

Question ID: 4058591042

Consider two circles $C_1: x^2+y^2=25$ and $C_2: (x-\alpha)^2+y^2=16$, where $\alpha\in(5,9)$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points of C_1 and C_2 be $\sin^{-1}\left(\frac{\sqrt{63}}{8}\right)$. If the length of common chord of C_1 and C_2 is β , then the value of $(\alpha\beta)^2$ equals ______.

Ans. Official answer NTA(1575)

Sol.

MATRIX JEE ACADEMY

JEE Main January 2024 | 30 January Shift-2

Question ID: 4058591038

25. Let
$$\alpha = \sum_{k=0}^{n} \left(\frac{\binom{n}{C_k}^2}{k+1} \right)$$
 and $\beta = \sum_{k=0}^{n-1} \left(\frac{\binom{n}{C_k} \binom{n}{C_{k+1}}}{k+2} \right)$. If $5\alpha = 6\beta$, then n equals ______.

Ans. Official answer NTA(10)

Sol.

Question ID: 4058591039

26. Let S_n be the sum to n-terms of an arithmetic progression 3, 7, 11, If $40 < \left(\frac{6}{n(n+1)}\sum_{k=1}^{n}S_k\right) < 42$, then n equals ______.

Ans. Official answer NTA (9)

Sol.

Question ID: 4058591037

27. In an examination of Mathematics paper, there are 20 questions of equal marks and the question paper is divided into three sections: A, B and C. A student is required to attempt total 15 questions taking at least 4 questions from each section. If section A has 8 questions, section B has 6 questions and section C has 6 questions, then the total number of ways a student can select 15 questions is ______.

Ans. Official answer NTA (11376)

Sol.

Question ID: 4058591041

Let Y=Y(X) be a curve lying in the first quadrant such that the area enclosed by the line Y-y=Y'(x)(X-x) and the co-ordinate axes, where (x, y) is any point on the curve, is always $\frac{-y^2}{2Y'(x)}+1$, $Y'(x) \neq 0$. If Y(1)=1, then 12Y(2) equals

Ans. Official answer NTA (20)

Sol.

MATRIX JEE ACADEMY

JEE Main January 2024 | 30 January Shift-2

Question ID: 4058591035

The number of symmetric relations defined on the set $\{1, 2, 3, 4\}$ which are not reflexive is

Ans. Official answer NTA (960)

Sol.

Question ID: 4058591044

30. The variance σ^2 of the data

	X_{i}	0	1	5	6	10	12	17
Г	$\mathbf{f}_{_{\mathrm{i}}}$	3	2	3	2	6	3	3

is

Ans. Official answer NTA (29)

Sol.

MATRIX JEE ACADEMY