JEE Main April 2025 Question Paper With Text Solution 02 April | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN APRIL 2025 | 02ND APRIL SHIFT-2

SECTION - A

Question ID: 603421241

- $\text{Let } \vec{a} = 2\hat{i} 3\hat{j} + \hat{k} \text{ , } \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \text{ and a vector } \vec{c} \text{ be such that } \left(\vec{a} \vec{c}\right) \times \vec{b} = -18\hat{i} 3\hat{j} + 12\hat{k} \text{ and } \vec{a} \cdot \vec{c} = 3 \text{ .}$ 1. If $\vec{b} \times \vec{c} = \vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to :
 - (1) 12
- (2) 18
- (3) 15
- (4)9

Official answer NTA(3) Ans.

Sol.

Question ID: 603421226

- If the domain of the function $f(x) = \frac{1}{\sqrt{10+3x-x^2}} + \frac{1}{\sqrt{x+|x|}}$ is (a, b), then $(1+a)^2 + b^2$ is equal to : 2.
 - (1)26

Official answer NTA(1) Ans.

Sol.

Question ID: 603421240

- The line L_i is parallel to vector $\vec{a} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ and passes through the point (7, 6, 2) and the line L_i is 3. parallel to the vector $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$ and passes trough the point (5, 3, 4). The shortest distance between the lines L_1 and L_2 is:
 - $(1) \frac{23}{\sqrt{38}}$
- (2) $\frac{21}{\sqrt{57}}$ (3) $\frac{23}{\sqrt{57}}$
- $(4) \frac{21}{\sqrt{38}}$

Official answer NTA(1) Ans.

Sol.

Question ID: 603421237

4. If the length of the minor axis of an ellipse is equal to one fourth of the distance between the foci, then the eccentricity of the ellipse is:

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 02 April Shift-2

(1)	3	
(1)	$\sqrt{19}$	

(2)
$$\frac{4}{\sqrt{17}}$$

(3)
$$\frac{\sqrt{3}}{16}$$

(4)
$$\frac{\sqrt{5}}{7}$$

Ans. Official answer NTA(2)

Sol.

Question ID: 603421245

- 5. Let $f:[1,\infty) \to [2,\infty)$ be a differentiable function. If $10\int_1^x f(t)dt = 5xf(x) x^5 9$ for all $x \ge 1$, then the value of f(3) is :
 - (1)18
- (2)22
- (3)26
- (4)32

Ans. Official answer NTA(4)

Sol.

Question ID: 603421236

- 6. Let the point P of the focal chord PQ of the parabola $y^2 = 16x$ be (1, -4). If the focus of the parabola divides the chord PQ in the ratio m: n, gcd(m, n) = 1, then $m^2 + n^2$ is equal to:
 - (1) 17
- (2)26
- (3)37
- (4) 10

Ans. Official answer NTA(1)

Sol.

Question ID: 603421227

- 7. Let $A = \{1, 2, 3, ..., 100\}$ and R be a relation on A such that $R = \{(a, b) : a = 2b + 1\}$. Let $(a_1, a_2), (a_2, a_3), (a_3, a_4), ..., (a_k, a_{k+1})$ be a sequence of k elements of R such that the second entry of an ordered pair is equal to the first entry of the next ordered pair. Then the largest integer k, for which such a sequence exists, is equal to:
 - (1)5
- (2)7
- (3)8
- (4)6

Ans. Official answer NTA(1)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 02 April Shift-2

Question ID: 603421244

Let (a, b) be the point of intersection of the curve $x^2 = 2y$ and the straight line y - 2x - 6 = 0 in the second 8. quadrant. Then the integral $I = \int_a^b \frac{9x^2}{1+5^x} dx$ is equal to :

- (1)24
- (2) 18
- (3)21
- (4)27

Official answer NTA(1) Ans.

Sol.

Question ID: 603421243

 $4\int_0^1 \left(\frac{1}{\sqrt{3+x^2} + \sqrt{1+x^2}} \right) dx - 3\log_e(\sqrt{3})$ is equal to : 9.

(1) $2 + \sqrt{2} - \log_e \left(1 + \sqrt{2}\right)$

(2) $2 + \sqrt{2} + \log_e \left(1 + \sqrt{2}\right)$ (4) $2 - \sqrt{2} - \log_e \left(1 + \sqrt{2}\right)$

(3) $2 - \sqrt{2} + \log_e \left(1 + \sqrt{2}\right)$

Official answer NTA(4) Ans.

Sol.

Question ID: 603421238

If $\theta \in \left[-\frac{7\pi}{6}, \frac{4\pi}{3} \right]$, then the number of solutions of $\sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1) \csc \theta - 4 = 0$, is: 10.

- (1)8
- (2)6

- (3)7
- (4) 10

Official answer NTA(2) Ans.

Sol.

Question ID: 603421235

11. Let the area of the triangle formed by a straight line L: x + by + c = 0 with co-ordinate axes be 48 square units. If the perpendicular drawn from the origin to the line L makes an angle of 45° with the positive x-axis, then the value of $b^2 + c^2$ is:

- (1)83
- (2)97
- (3)90
- (4)93

Official answer NTA(2) Ans.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 02 April Shift-2

Sol.

Question ID: 603421242

- 12. If $\lim_{x\to 0} \frac{\cos(2x) + a\cos(4x) b}{x^4}$ is finite, then (a+b) is equal to :
 - $(1)\frac{3}{4}$
- (2)0
- $(3)\frac{1}{2}$
- (4)-1

Ans. Official answer NTA(3)

Sol.

Question ID: 603421233

- 13. If the mean and the variance of 6, 4, a, 8, b, 12, 10, 13 are 9 and 9.25 respectively, then a + b + ab is equal to:
 - (1) 100
- (2) 105
- (3)106
- (4) 103

Ans. Official answer NTA(4)

Sol.

Question ID: 603421229

14. If the system of equations

$$2x + \lambda y + 3z = 5$$

$$3x + 2y - z = 7$$

$$4x + 5y + \mu z = 9$$

has infinitely many solutions, then $(\lambda^2 + \mu^2)$ is equal to :

- (1) 26
- (2)30
- (3)22
- (4)18

Ans. Official answer NTA(1)

Sol.

Question ID: 603421231

15. The number of ways, in which the letters A, B, C, D, E can be placed in the 8 boxes of the figure below so that no row remains empty and at most one letter can be placed in a box, is:

MATRIX JEE ACADEMY

MATRIX MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 02 April Shift-2

(1)960

(2)5880

(3)5760

(4)840

Ans.

Official answer NTA(3)

Sol.

Question ID: 603421239

- 16. If the image of the point P(1, 0, 3) in the line joining the points A(4, 7, 1) and B(3, 5, 3) is Q(α , β , γ), then $\alpha + \beta + \gamma$ is equal to :
 - (1)18
- (2) 13
- $(3)\frac{47}{3}$
- $(4) \frac{46}{3}$

Ans. Official answer NTA(4)

Sol.

Question ID: 603421232

- 17. If $\sum_{r=0}^{10} \left(\frac{10^{r+1} 1}{10^r} \right) \cdot {}^{11} C_{r+1} = \frac{\alpha^{11} 11^{11}}{10^{10}}$, then α is equal to :
 - (1)15
- (2)20
- (3)24
- **(4)** 11

Ans. Official answer NTA(2)

Sol.

Question ID: 603421234

18. Given three indentical bags each containing 10 balls, whose colours are as follows:

	Red	Blue	Green
Bag I	3	2	5
Bag II	4	3	3
Bag III	5	1	4

A person chooses a bag at random and takes out a ball. If the ball is Red, the probability that it is from bag I is p and if the ball is Green, the probability that it is from bag III is q, then the value of $\left(\frac{1}{p} + \frac{1}{q}\right)$ is :

(1)9

(2)8

(3)7

(4)6

Ans. Official answer NTA(3)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 02 April Shift-2

Sol.

Quest	ion ID : 603421230)				
19.			n: the sum of all the odd	terms is 24, the sum of	all the even terms is 30	
15.	The number of terms of an A.P. is even; the sum of all the odd terms is 24, the sum of all the even terms is 30 and the last term exceeds the first by $\frac{21}{2}$. Then the number of terms which are integers in the A.P. is:					
	(1) 10	(2) 4	(3) 6	(4) 8		
Ans.	Official answer N	TA(2)				
Sol.						
Quest	ion ID : 603421228					
20.	Let A be a 3 × 3 ı	real matrix such tha	$A^{2}(A-2I)-4(A-I)$	$\mathbf{O} = \mathbf{O}$, where I and \mathbf{O} as	e the identity and null	
	Let A be a 3 × 3 real matrix such that $A^2(A - 2I) - 4(A - I) = O$, where I and O are the identity and null matrices, respectively. If $A^5 = \alpha A^2 + \beta A + \gamma I$, where α , β and γ are real constants, then $\alpha + \beta + \gamma$ is equal to:					
	(1) 76	(2) 20	(3) 12	(4) 4	ar so p / 15 equal to.	
Ans.	Official answer N	` ,	(5)12	(.) .		
Sol.						
			SECTION - B			
Quest	ion ID : 603421249					
	Win					
21.	Let $A(4, -2)$, $B(1, 1)$ and $C(9, -3)$ be the vertices of a triangle ABC. Then the maximum area of the parallelogram AFDE, formed with vertices D, E and F on the sides BC, CA and AB of the triangle ABC respectively, is					
	AFDE, formed w	ith vertices D, E an	ur on the sides bc, c	A and AD of the triangi	e ABC respectively, is	
Ans.	Official answer N	TA(3)				
Sol.		· ,				
Quest	ion ID : 603421246	j				
22.	If the set of all $a \in R$ - $\{1\}$, for which the roots of the equation $(1-a)x^2 + 2(a-3)x + 9 = 0$ are positive is					
	$(-\infty, -\alpha] \cup [\beta, \gamma)$), then $2\alpha + \beta + \gamma$ is	equal to			
Ans.	Official answer N	TA(7)				
Sol.						

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main April 2025 | 02 April Shift-2

Question ID: 603421250

23. Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} + 2y \sec^2 x = 2\sec^2 x + 3\tan x$. $\sec^2 x$ such that $y(0) = \frac{5}{4}$. Then $12\left(y\left(\frac{\pi}{4}\right) - e^{-2}\right)$ is equal to _____.

Ans. Official answer NTA(21)

Sol.

Question ID: 603421248

Ans. Official answer NTA(3)

Sol.

Question ID: 603421247

25. If the sum of the first 10 terms of the series $\frac{4 \cdot 1}{1 + 4 \cdot 1^4} + \frac{4 \cdot 2}{1 + 4 \cdot 2^4} + \frac{4 \cdot 3}{1 + 4 \cdot 3^4} + \dots$ is $\frac{m}{n}$, where gcd(m, n) = 1, then m + n is equal to ______.

Ans. Official answer NTA (441)

Sol.