JEE Main January 2025 Question Paper With Text Solution 29 January | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 29 January Shift-2

JEE MAIN JANUARY 2025 | 29TH JANUARY SHIFT-2

SECTION - A

1. The remainder, when 7^{103} is divided by 23, is equal to:

(1)17

(2)6

(3)9

(4) 14

Ans. Official answer NTA(4)

Sol.

Question ID: 6564451138

2. If $\sin x + \sin^2 x = 1$, $x \in \left(0, \frac{\pi}{2}\right)$, then

 $(\cos^{12} x + \tan^{12} x) + 3(\cos^{10} x + \tan^{10} x + \cos^8 x + \tan^8 x) + (\cos^6 x + \tan^6 x)$ is equal to:

(1)4

(2)2

(3)3

(4) 1

Ans. Official answer NTA(2)

Sol.

Question ID: 6564451133

3. Bag 1 contains 4 white balls and 5 black balls, and Bag 2 contains n white balls and 3 black. One ball is drawn randomly from Bag 1 and transferred to Bag 2. A ball is then drawn randomly from Bag 2. If the probability, that the ball drawn is white, is 29/45, then n is equal to:

(1)3

(2)5

(3)4

(4)6

Ans. Official answer NTA (4)

Sol.

Question ID: 6564451144

4. Let the area of enclosed between the curves $|y|=1-x^2$ and $x^2+y^2=1$ be α . If $9\alpha=\beta\pi+\gamma;\beta,\gamma$ are integers, then the value of $|\beta-\gamma|$ equals.

(1)18

(2)33

(3) 27

(4) 15

Ans. Official answer NTA(2)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 29 January Shift-2

Sol.

Question ID: 6564451136

5. Let a circle C pass through the points (4, 2) and (0, 2), and its centre lie on 3x + 2y + 2 = 0. Then the length of the chord, of the circle C, whose mid-point is (1, 2), is:

- (1) $2\sqrt{3}$
- (2) $\sqrt{3}$
- (3) $4\sqrt{2}$
- (4) $2\sqrt{2}$

Ans. Official answer NTA(1)

Sol.

Question ID: 6564451129

6. Let $A = [a_{ij}]$ be a matrix of order 3×3 , with $a_{ij} = (\sqrt{2})^{i+j}$. If the sum of all the elements in the third row of A^2 is $\alpha + \beta \sqrt{2}, \alpha, \beta \in \mathbb{Z}$, then $\alpha + \beta$ is equal to :

- (1) 168
- (2) 210
- (3)224
- (4)280

Ans. Official answer NTA(3)

Sol.

Question ID: 6564451141

7. Let P be the foot of the perpendicular from point (1, 2, 2) on the line $L: \frac{x-1}{1} = \frac{y+1}{-1} = \frac{z-2}{2}$. Let the line $\vec{r} = (-\hat{i} + \hat{j} - 2\hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k}), \lambda \in \mathbb{R}$, intersect the line L, at Q. Then $2(PQ)^2$ is equal to:

- (1) 19
- (2)27
- (3)25
- (4)29

Ans. Official answer NTA(2)

Sol.

Question ID: 6564451142

8. Let $f(x) = (x^2 - 1) | x^2 - ax + 2 | + \cos | x |$ the function be not differentiable at the two points $x = \alpha = 2$ and $x = \beta$. Then the distance of the point (α, β) from the line 12x + 5y + 10 = 0 is equal to:

- (1)4
- (2)5
- (3)2
- (4) 3

Ans. Official answer NTA (4)

Answer by MATRIX (Bonus)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 29 January Shift-2

Sol.

Question ID: 6564451137

If $\alpha x + \beta y = 109$ is the equation of the chord of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, whose mid point is $\left(\frac{5}{2}, \frac{1}{2}\right)$, then 9.

 $\alpha + \beta$ is equal to :

- (1)37
- (2)58
- (3)46
- (4)72

Official answer NTA(2) Ans.

Sol.

Question ID: 6564451145

If for solution curve y = f(x) of the differential equation $\frac{dy}{dx} + (\tan x)y = \frac{2 + \sec x}{(1 + 2\sec x)^2}$, 10.

$$x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right), f\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{10}$$
, then $f\left(\frac{\pi}{4}\right)$ is equal to:

- (1) $\frac{4-\sqrt{2}}{14}$ (2) $\frac{5-\sqrt{3}}{2\sqrt{2}}$ (3) $\frac{9\sqrt{3}+3}{10(4+\sqrt{3})}$ (4) $\frac{\sqrt{3}+1}{10(4+\sqrt{3})}$

Ans.

Official answer NTA (2) Ans.

Question ID: 6564451135

- 11. Let the line x + y = 1 meet the axes of x and y at A and B, respectively. A right angled triangle AMN is inscribed in the triangle OAB, where O is the origin and the points M and N lie on the lines OB and AB respectively. If the area of the triangle AMN is $\frac{4}{9}$ of the area of the triangle OAB and AN: NB = λ : 1, then the sum of all possible value(s) of is λ :
 - (1) 1/2
- (2) 5/2
- (3) 13/6
- (4)2

Official answer NTA (4) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 29 January Shift-2

Question ID: 6564451128

If the set of all $a \in \mathbb{R}$, for which the equation $2x^2 + (a-5)x + 15 = 3a$ has no real roots, is the interval (α, β) 12.

and $X = \{x \in Z : \alpha \le x \le \beta\}$, then $\sum_{x \in Y} x^2$ is equal to :

- (1)2109
- (2)2119
- (3)2139
- (4)2129

Official answer NTA(3) Ans.

Sol.

Question ID: 6564451134

 $Let\,A\,[a_{ij}]\ be\ a\ 2\times 2\ matrix\ such\ that\ a_{ij}\in\{0,\,1\}\ for\ all\ i\ and\ j.\ Let\ the\ random\ variable\ X\ denote\ the\ possible$ 13. values of the determinant of the matrix A. Then, the variance of X is:

- (1) 5/8
- (2) 3/4
- (3) 1/4
- (4) 3/8

Official answer NTA (4) Ans.

Sol.

Question ID: 6564451131

14. If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in the arrangement is:

- (1) PRNAUK (2) PRNAKU
- (3) PRKANU
- (4) PRKAUN

Official answer NTA (4) Ans.

Sol.

Question ID: 6564451143

Let $f(x) = \int_{0}^{x} t(t^2 - 9t + 20)dt$, $1 \le x \le 5$. If the range of f is $[\alpha, \beta]$, then $4(\alpha + \beta)$ equals: 15.

- (1)157
- (2)253
- (3) 154
- (4) 125

Official answer NTA(1) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 29 January Shift-2

Question ID: 6564451126

16. If the domain of the function $\log_5(18x-x^2-77)$ is (α, β) and the domain of the function

$$log_{(x\text{--}1)}\!\left(\frac{2x^2+3x-2}{x^2-3x-4}\right)$$
 is $(\gamma,\delta),$ then $\alpha^2+\beta^2+\gamma^2$ is equal to :

- (1)179
- (2)186
- (3) 195
- (4) 174

Ans. Official answer NTA(2)

Sol.

Question ID: 6564451127

17. Let $S = N \cup \{0\}$. Define a relation R from S to R by:

$$R = \left\{ (x, y) : \log_e y = x \log_e \left(\frac{2}{5}\right), x \in S, y \in R \right\}.$$

Then, the sum of all elements in the range of R is equal to:

- (1) 3/2
- (2) 10/9
- (3) 5/3
- (4) 5/2

Ans. Official answer NTA(3)

Sol.

Question ID: 6564451139

18. Let \hat{a} be a unit vector perpendicular to the vectors $\vec{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{c} = 2\hat{i} - 3\hat{j} + \hat{k}$, and makes an angle of $\cos^{-1}\left(-\frac{1}{3}\right)$ with vector $\hat{i} + \hat{j} + \hat{k}$. If \hat{a} makes an angle of $\frac{\pi}{3}$ with the vector $\hat{i} + \alpha\hat{j} + \hat{k}$, then the value of α is:

- $(1) \sqrt{3}$
- (2) $\sqrt{3}$
- (3) $\sqrt{6}$
- $(4) \sqrt{6}$

Ans. Official answer NTA (4)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 29 January Shift-2

Question ID: 6564451140

19. Let a straight lien L pass through the point P (2, -1, 3) and be perpendicular to the lines $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{-2}$ and $\frac{x-3}{1} = \frac{y-2}{3} = \frac{z+2}{4}$. If the line L intersects the yz-plane at the point Q, then the distance between the points P and Q is:

- (1) $2\sqrt{3}$
- (2)2
- (3)3
- $(4) \sqrt{10}$

Ans. Official answer NTA(3)

Sol.

Question ID: 6564451130

- 20. Let α , β ($\alpha \neq \beta$) be the values of m, for which the equations x + y + z = 1; x + 2y + 4z = m and $x + 4y + 10z = m^2$ have infinitely many solutions. Then the value of $\sum_{n=1}^{10} (n^{\alpha} + n^{\beta})$ is equal to :
 - (1)440
- (2)3080
- (3) 3410
- (4)560

Ans. Official answer NTA(1)

Sol.

SECTION - B

Question ID: 6564451149

- 21. If $\lim_{t\to 0} \left(\int_{0}^{1} (3x+5)^t dx\right)^{\frac{1}{t}} = \frac{\alpha}{5e} \left(\frac{8}{5}\right)^{\frac{2}{3}}$, then α is equal to _____.
- **Ans.** Official answer NTA (64)

Sol.

Question ID: 6564451150

22. If $24 \int_{0}^{\pi/4} \left(\sin \left| 4x - \frac{\pi}{12} \right| + \left[2\sin x \right] \right) dx = 2\pi + \alpha$, where [.] denotes the greatest integer function, then α is equal to ______.

Ans. Official answer NTA(12)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 29 January Shift-2

Sol.

Question ID: 6564451146

23. Let integers a, $b \in [-3, 3]$ be such that $a + b \ne 0$. Then the number of all possible ordered pairs (a, b), for

which
$$\left|\frac{z-a}{z+b}\right|=1$$
 and $\left|\begin{array}{ccc} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{array}\right|=1, z\in C$, where ω and ω^2 are the roots of $x^2+x+1=0$, is

equal to _____.

Ans. Official answer NTA(10)

Sol.

Question ID: 6564451148

24. Let $y^2 = 12x$ be the parabola and S be its focus. Let PQ be a focal chord of the parabola such that $(SP)(SQ = \frac{147}{4})$. Let C be the circle described taking PQ as a diameter. If the equation of a circle C is $64x^2 + 64y^2 - \alpha x + -64\sqrt{3}y = \beta$, then $\beta - \alpha$ is equal to _____.

Ans. Official answer NTA (1328)

Sol.

Question ID: 6564451147

25. Let $a_1, a_2, \dots, a_{2024}$ be an Arithmetic Progression such that $a_1 + (a_5 + a_{10} + a_{15} + \dots + a_{2020}) + a_{2024} = 2233$. Then $a_1 + a_2 + a_3 + \dots + a_{2024}$ is equal to _____.

Ans. Official answer NTA (11132)

Sol.