JEE Main January 2024 Question Paper With Text Solution 29 January | Shift-1

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

IEE MAIN JANUARY 2024 | 29TH JANUARY SHIFT-1

SECTION - A

Question ID: 405859835

1. If
$$f(x) = \begin{cases} 2+2x, & -1 \le x > 0 \\ 1-\frac{x}{3}, & 0 \le x \le 3 \end{cases}$$
; $g(x) = \begin{cases} -x, & -3 \le x \le 0 \\ x, & 0 < x \le 1 \end{cases}$, then range of (fog) (x) is:

- (1)[0,1)
- (2)[0,3)
- (3)(0,1]
- (4)[0,1]

Official answer NTA(4) Ans.

Sol.

Question ID: 405859848

Let $\left(5, \frac{a}{4}\right)$ be the circumcenter of a triangle with vertices A(a, -2), B(a, 6) and. Let a denote the circumradius,

 β denote the area and γ denote the perimeter of the triangle. Then $\alpha + \beta + \gamma$ is:

- (1)53
- (2)60
- (3)62
- (4)30

Official answer NTA(1) Ans.

Sol.

Question ID: 405859852

- Let O be the origin and the position vectors of A and B be $2\hat{i}+2\hat{j}+\hat{k}$ and $2\hat{i}+4\hat{j}+4\hat{k}$ respectively. If the 3. internal bisector of meets the line AB at C, then the length of OC is:
 - $(1) \frac{2}{3} \sqrt{34}$
- (2) $\frac{3}{2}\sqrt{31}$ (3) $\frac{2}{3}\sqrt{31}$ (4) $\frac{3}{2}\sqrt{34}$

Official answer NTA(1) Ans.

Sol.

Question ID: 405859846

For $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if $y(x) = \int \frac{\cos \cot x \sin x}{\cos \cot x \sin x \sin^2 x} dx$, and $\lim_{x \to \left(\frac{\pi}{2}\right)^{-1}} y(x) = 0$ then $y\left(\frac{\pi}{4}\right)$ is equal to :

(1)
$$\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$$

$$(2) \frac{1}{\sqrt{2}} \tan^{-1} \left(-\frac{1}{2}\right)$$

(1)
$$\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$$
 (2) $\frac{1}{\sqrt{2}}\tan^{-1}\left(-\frac{1}{2}\right)$ (3) $-\frac{1}{\sqrt{2}}\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (4) $\frac{1}{2}\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Official answer NTA(2) Ans.

Sol.

Question ID: 405859838

Let A be a square matrix such that $AA^{T} = I$. Then $\frac{1}{2}A \left[\left(A + A^{T} \right)^{2} + \left(A - A^{T} \right)^{2} \right]$ is equal to : 5.

$$(1) A^2 + I$$

$$(2) A^2 + A^T$$

$$(3) A^3 + 1$$

$$(4) A^3 + A^T$$

Official answer NTA (4) Ans.

Sol.

Question ID: 405859840

In an A.P., the sixth term $a_6 = 2$. If the product $a_1 a_4 a_5$ is the greatest, then the common difference of the A.P. is 6. equal to:

Ans. Official answer NTA(2)

Sol.

Question ID: 405859854

If $a, -\frac{\pi}{2} < a < \frac{\pi}{2}$ is the solution of $\cos \theta + 5 \sin \theta = 1$, then the value of $\tan \alpha$ is: 7.

$$(1) \frac{10 - \sqrt{10}}{12}$$

(2)
$$\frac{\sqrt{10}-10}{6}$$

(3)
$$\frac{10-\sqrt{10}}{6}$$

(1)
$$\frac{10 - \sqrt{10}}{12}$$
 (2) $\frac{\sqrt{10} - 10}{6}$ (3) $\frac{10 - \sqrt{10}}{6}$ (4) $\frac{\sqrt{10} - 10}{12}$

Official answer NTA(4) Ans.

Sol.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 29 January Shift-1

Question ID: 405859845

- 8. If the value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{x^2 \cos x}{1+\pi^x} + \frac{1+\sin^2 x}{1+e^{\sin x^{2023}}} \right) dx = \frac{\pi}{4} (\pi+a) 2$, then the value of a is :
 - (1) 3/2
- (2)3
- (3) 2
- $(4) \frac{3}{2}$

Ans. Official answer NTA(2)

Sol.

Question ID: 405859851

- 9. Let \vec{a} , \vec{b} and \vec{c} be three non-zero vectors such that \vec{b} and \vec{c} are non-collinear. If $\vec{a} + 5\vec{b}$ is collinear with \vec{c} , $\vec{b} + 6\vec{c}$, is collinear with \vec{a} and $\vec{a} + a\vec{b} + \beta\vec{c} = \vec{0}$ then $\alpha + \beta$ is equal to:
 - (1) 25
- (2) 30
- (3)35
- (4)30

Ans. Official answer NTA(3)

Sol.

Question ID: 405859843

- 10. Suppose $f(x) = \frac{(2^x + 2^{-x})\tan x \sqrt{\tan^{-1}(x^2 x + 1)}}{(7x^2 + 3x + 1)^3}$. Then the value of f(0) is equal to :
 - $(1)\frac{\pi}{2}$
- (2) π
- (3)0
- (4) $\sqrt{\pi}$

Ans.

Ans. Official answer NTA(4)

Question ID: 405859842

 $\lim_{x \to \frac{\pi}{2}} \left| \frac{1}{\left(x - \frac{\pi}{2}\right)^2} \int_{x^3}^{\left(\frac{\pi}{3}\right)^3} \cos\left(t^{\frac{t}{3}}\right) dt \right| \text{ is equal to :}$ 11.

- $(1)\frac{3\pi}{4}$
- $(2) \frac{3\pi^2}{8} \qquad (3) \frac{3\pi^2}{4}$

Official answer NTA(2) Ans.

Sol.

Question ID: 405859847

A function y = f(x) satisfies $f(x) \sin 2x + \sin x - (1 + \cos^2 x) f(x) = 0$ with condition f(0) = 0. Then, $f\left(\frac{\pi}{2}\right)$ is 12. equal to:

- (1)2
- (2)1

- (3)0
- (4) 1

Ans. Official answer NTA(2)

Sol.

Question ID: 405859836

- 13. Let R be a relation on $Z \times Z$ defined by (a, b) R (c, d) if and only if ad - bc is divisible by 5. Then R is:
 - (1) Reflexive but neither symmetric nor transitive
 - (2) Reflexive and symmetric but not transitive
 - (3) Reflexive and transitive but not stmmetric
 - (4) Reflexive, symmetric and transitive

Official answer NTA(2) Ans.

Sol.

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 29 January Shift-1

Question ID: 405859850

14. Let PQR be a triangle with R (-1, 4, 2). Suppose M (2, 1, 2) is the mid point of PQ. The distance of the centroid of \triangle PQR from the point of intersection of the lines $\frac{x-2}{0} = \frac{y}{2} = \frac{z+3}{-1}$ and $\frac{x-1}{1} = \frac{y+3}{-3} = \frac{z+1}{1}$ is:

- (1) $\sqrt{99}$
- (2) $\sqrt{69}$
- (3) 69
- (4)9

Ans. Official answer NTA(2)

Sol.

Question ID: 405859849

In a \triangle ABC, suppose y = x is the equation of the bisector of the angle B and the equation of the side AC is 2x - y = 2. If 2AB = BC and the points A and B are respectively (4, 6) and (α , β), then $\alpha + 2\beta$ is equal to :

- (1)48
- (2)39
- (3)45
- (4)42

Ans. Official answer NTA(4)

Sol.

Question ID: 405859837

 $16. \qquad \text{If } z=\frac{1}{2}-2i \text{ is such that } |z+1|=\alpha z+\beta \big(1+i\big), i=\sqrt{-1} \text{ and } \alpha,\beta \in R \text{ , then } \alpha+\beta \text{ is : } 1\leq i\leq n-1 \text{ and } 1\leq n-1 \text{ and } 1\leq i\leq n-1 \text{ and } 1\leq n$

- $(1)^{2}$
- (2)-4
- (3)3
- (4)-1

Ans. Official answer NTA(3)

Sol.

Question ID: 405859841

17. If in a G.P. of 64 terms, the sum of all the terms is 7 times sum of the odd terms the G.P., then the common ratio of the G.P. is equal to:

- (1)7
- (2)6
- (3)4
- (4)5

Ans. Official answer NTA(2)

Sol.

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 29 January Shift-1

Question ID: 405859844

18. Consider the function $f: \left[\frac{1}{2}, 1\right] \to \mathbb{R}$ defined by $f(x) = 4\sqrt{2}x^3 - 3\sqrt{2}x - 1$. Consider the statements :

- (I) The curve y = f(x) intersects the x-axis exactly at one point
- (II) The curve y = f(x) intersects the x-axis at $x = \cos \frac{\pi}{12}$.

Then:

(1) Only (I) is correct

- (2) Both (I) and (II) are the correct
- (3) Both (I) and (II) are incorrect
- (4) Only (II) is correct

Ans. Official answer NTA(2)

Sol.

Question ID: 405859839

19. Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix}$ and $|2A|^3 = 2^{21}$ where $\alpha, \beta \in Z$. Then a value of α is :

- (1)5
- (2) 17
- (3)3
- (4)9

Ans. Official answer NTA(1)

Sol.

Question ID: 405859853

- 20. A fair die is thrown until 2 appears. Then the probability, then 2 appears in even number of throws, is:
 - (1) 5/11
- (2) 1/6
- (3)6/11
- (4) 5/6

Ans. Official answer NTA(1)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 29 January Shift-1

SECTION - B

Ouestion ID: 405859857

21. If
$$\frac{{}^{11}C_1}{2} + \frac{{}^{11}C_2}{3} + ... + \frac{{}^{11}C_9}{10} = \frac{n}{m}$$
 with gcd(n, m) = 1, then n + m is equal to _____.

Ans. Official answer NTA (2041)

Sol.

Question ID: 405859856

- All the letters of the word "GTWENTY" are written in all possible ways with or without meaning and these words are written as in a dictionary. The serial number of the word "GTWENTY" is
- **Ans.** Official answer NTA (553)

Sol.

Question ID: 405859862

- 23. If the points of intersection of two distinct conics $x^2 + y^2 = 4b$ and $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ lie on the curve $y^2 = 3x^2$, then $3\sqrt{3}$ times the area of the rectangle formed by the intersection points _____.
- Ans. Official answer NTA(432)

Sol.

Question ID: 405859860

24. If the solution curve y = y(x) of the differential equation $(1 + y^2)(1 + \log_a x) dx + x dy = 0$, x > 0 passes through

the point (1, 1) and
$$y(e) = \frac{\alpha - \tan\left(\frac{3}{2}\right)}{\beta + \tan\left(\frac{3}{2}\right)}$$
, then $\alpha + 2\beta$ is______.

Ans. Official answer NTA(3)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 29 January Shift-1

Question ID: 405859863

- A line with direction ratios 2, 1, 2 meets the lines x = y + 2 = z and x + 2 = 2y = 2z respectively at the points P and Q. If the length of the perpendicular from the point (1, 2, 12) to the line PQ is I, then I^2 is _____.
- **Ans.** Official answer NTA (65)

Sol.

Question ID: 405859861

- Equation of two diameters of a circle are 2x 3y = 5 and 3x 4y = 7. The line joining the points $\left(-\frac{22}{7}, -4\right)$ and $\left(-\frac{1}{7}, 3\right)$ intersects the circle at only one point $P(\alpha, \beta)$. Then $17\beta \alpha$ is equal to _____.
- **Ans.** Official answer NTA(2)

Sol.

Question ID: 405859858

- 27. Let $f(x) = 2^x x^2$, $x \in R$. If m and n are respectively the number of points at which the curves y = f(x) and y = f(x) intersects the x-axis, then the value of m + n is _____.
- Ans. Official answer NTA(5)

Sol.

Question ID: 405859859

- 28. The area (in sq. units) of the part of the circle $x^2 + y^2 = 169$ which is below the line 5x y = 13 is $\frac{\pi\alpha}{2\beta} \frac{65}{2} + \frac{\alpha}{\beta} \sin^{-1}\left(\frac{12}{13}\right)$, where α , β are coprime number. Then $\alpha + \beta$ is equal to _____.
- **Ans.** Official answer NTA(171)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 29 January Shift-1

Question ID: 405859864

29. If the mean and variance of the data 65, 68,58, 44, 48, 45, 60, α , β , 60 where $\alpha > \beta$, are 56 and 66.2 respectively, then $\alpha^2 + \beta^2$ is equal to _____.

Ans. Official answer NTA (6344)

Sol.

Question ID: 405859855

30. Let α , β the roots of the equation $x^2 - x + 2 = 0$ with $Im(\alpha) > Im(\beta)$. Then $\alpha^6 + \alpha^4 + \beta^4 - 5\alpha^2$ is equal to

Ans. Official answer NTA(13)

Sol.

MATRIX JEE ACADEMY