JEE Main January 2024 Question Paper With Text Solution 27 January | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

JEE MAIN JANUARY 2024 | 27TH JANUARY SHIFT-2

SECTION - A

Question ID: 533543477

The integral $\int \frac{(x^8 - x^2) dx}{(x^{12} + 3x^6 + 1) tan^{-1} \left(x^3 + \frac{1}{x^3}\right)}$ is equal to: 1.

(1) $\log_{e} \left(\left| \tan^{-1} \left(x^{3} + \frac{1}{x^{3}} \right) \right| \right)^{1/3} + C$

(2) $\log_{e} \left(\left| \tan^{-1} \left(x^{3} + \frac{1}{x^{3}} \right) \right|^{1/2} + C \right)$

(3) $\log_{e} \left(\left| \tan^{-1} \left(x^{3} + \frac{1}{x^{3}} \right) \right| \right) + C$

(4) $\log_{e} \left(\left| \tan^{-1} \left(x^{3} + \frac{1}{x^{3}} \right) \right|^{3} + C \right)$

Official answer NTA(1) Ans.

Sol.

Question ID: 533543482

Let the image of the point (1,0,7) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ be the point (α, β, γ) Then which one of the 2. following points lies on the line passing through (α, β, γ) and making angles $\frac{2\pi}{3}$ and $\frac{3\pi}{4}$ with y-axis and z-axis respectively and an acute angle with x-axis?

(1) $(1,2,1-\sqrt{2})$

(2) $(3, -4, 3 + 2\sqrt{2})$ (3) $(1, -2, 1 + \sqrt{2})$ (4) $(3, 4, 3 - 2\sqrt{2})$

Official answer NTA (4) Ans.

Sol.

Question ID: 533543486

3. Considering only the principal values of inverse trigonometric functions, the number of positive real values of x satisfying $\tan^{-1}(x) + \tan^{-1}(2x) = \frac{\pi}{4}$ is :

(1)1

(2)2

(3)0

(4) more than 2

Ans. Official answer NTA(1)

Sol.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-2

Question ID: 533543468

- 4. Let A and B be two finite sets with m and n elements respectively. The total number of subsets of the set A is 56 more than the total number of subsets of B. Then the distance of the point P(m, n) from the point Q(-2, -3) is:
 - (1)10
- (2)4

- (3)8
- (4)6

Official answer NTA(1) Ans.

Sol.

Question ID: 533543467

- Let $f: R \left\{\frac{-1}{2}\right\} \to R$ and $g: R \left\{\frac{-5}{2}\right\} \to R$ be defined as $f(x) = \frac{2x+3}{2x+1}$ and $g(x) = \frac{|x|+1}{2x+5}$. Then, the 5. domain of the function fog is:
 - $(1) R \left\{ -\frac{7}{4} \right\}$
- (2)R
- (3) $R \left\{-\frac{5}{2}\right\}$ (4) $R \left\{-\frac{5}{2}, -\frac{7}{4}\right\}$

Official answer NTA(3) Ans.

Sol.

Question ID: 533543483

- Let the position vectors of the vertices A, B and C of a triangle be $2\hat{i}+2\hat{j}+\hat{k}$, $\hat{i}+2\hat{j}+2\hat{k}$ and $2\hat{i}+\hat{j}+2\hat{k}$ 6. respectively. Let l_1 , l_2 and l_3 be be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides AB, BC and CA respectively, then $1_1^2 + 1_2^2 + 1_3^2$ equal :
 - $(1)\frac{1}{5}$
- $(2)\frac{1}{2}$
- $(3)\frac{1}{4}$
- $(4) \frac{1}{2}$

Official answer NTA(2) Ans.

Question ID: 533543481

Let R be the interior region between the lines 3x - y + 1 = 0 and x + 2y - 5 = 0 containing the origin. The set 7. of all values of a, for which the points $(a^2, a+1)$ lie in R, is:

$$(1)\left(-3,-1\right)\cup\left(-\frac{1}{3},1\right)$$

(2)
$$(-3,-1) \cup \left(\frac{1}{3},1\right)$$

$$(3) \left(-3,0\right) \cup \left(\frac{1}{3},1\right)$$

$$(4)\left(-3,0\right)\cup\left(\frac{2}{3},1\right)$$

Official answer NTA(3) Ans.

Sol.

Question ID: 533543479

If y = y(x) is the solution curve of the differential equation $(x^2 - 4) dy - (y^2 - 3y) dx = 0$, x > 2, $y(4) = \frac{3}{2}$ and 8. the slope of the curve is never zero, then the value of y(10) equals:

(1)
$$\frac{3}{1+2\sqrt{2}}$$

(2)
$$\frac{3}{1+(8)^{1/4}}$$
 (3) $\frac{3}{1-2\sqrt{2}}$ (4) $\frac{3}{1-(8)^{1/4}}$

(3)
$$\frac{3}{1-2\sqrt{2}}$$

$$(4) \frac{3}{1 - (8)^{1/4}}$$

Official answer NTA(2) Ans.

Sol.

Question ID: 533543472

The 20th term from the end of the progression $20,19\frac{1}{4},18\frac{1}{2},17\frac{3}{4},...,-129\frac{1}{4}$ is: 9.

$$(1)-110$$

$$(2) - 180$$

$$(3)-115$$

$$(4)-100$$

Official answer NTA(3) Ans.

Question ID: 533543480

Let e_1 be the eccentricity of the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ and e_2 be the eccentricity of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 10. a > b, which passes through the foci of the hyperbola. If $e_1 e_2 = 1$ then the length of the chord of the ellipse parallel to the x-axis and passing through (0, 2) is:

(1) $\frac{10\sqrt{5}}{3}$

(2) $4\sqrt{5}$

(3) $3\sqrt{5}$

 $(4) \frac{8\sqrt{5}}{3}$

Official answer NTA(1) Ans.

Sol.

Question ID: 533543473

If $2\tan^2\theta - 5\sec\theta = 1$ has exactly 7 solutions in the interval $\left[0, \frac{n\pi}{2}\right]$, for the least value of $n \in \mathbb{N}$, then $\sum_{k=1}^{n} \frac{k}{2^k}$ 11. is equal to:

 $(1) \frac{1}{2^{14}} \left(2^{15} - 15 \right) \qquad (2) 1 - \frac{15}{2^{13}}$

(3) $\frac{1}{2^{13}} (2^{14} - 15)$ (4) $\frac{1}{2^{15}} (2^{14} - 14)$

Official answer NTA(3) Ans.

Sol.

Question ID: 533543474

If $\lim_{x\to 0} \frac{3+\alpha\sin x+\beta\cos x+\log_e(1-x)}{3\tan^2 x} = \frac{1}{3}$, then $2\alpha-\beta$ is equal to : 12.

(1)7

(3)5

(4)2

Official answer NTA(3) Ans.

Question ID: 533543470

13.

The values of α , for which $\begin{vmatrix} 1 & \frac{3}{2} & \alpha + \frac{3}{2} \\ 1 & \frac{1}{3} & \alpha + \frac{1}{3} \\ 2\alpha + 3 & 3\alpha + 1 & 0 \end{vmatrix} = 0$ lie in the interval:

(1)(0,3)

 $(2)\left(-\frac{3}{2},\frac{3}{2}\right) \qquad (3)(-2,1)$

Official answer NTA(4) Ans.

Sol.

Question ID: 533543476

Let $g(x) = 3f(\frac{x}{3}) + f(3-x)$ and f''(x) > 0 for all $x \in (0, 3)$. If g is decreasing in $(0, \alpha)$ and increasing in 14.

 $(\alpha, 3)$, then 8α is:

(1)20

(2)0

(3)24

(4)18

Official answer NTA (4) Ans.

Sol.

Question ID: 533543478

For $0 \le a \le 1$, the value of the integral $\int_0^{\pi} \frac{dx}{1 - 2a \cos x + a^2}$ is: 15.

(1) $\frac{\pi}{1-a^2}$

(2) $\frac{\pi^2}{\pi + a^2}$ (3) $\frac{\pi^2}{\pi - a^2}$ (4) $\frac{\pi}{1 + a^2}$

Official answer NTA(1) Ans.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-2

Question ID: 533543469

If α , β are the roots of the equation $x^2 - x - 1 = 0$ and $S_n = 2023\alpha^n + 2024\beta^n$, then: 16.

$$(1) S_{11} = S_{10} + S_{12}$$

$$(2) 2S_{12} = S_{11} + S_{10}$$

$$(3) S_{12} = S_{11} + S_{16}$$

(1)
$$S_{11} = S_{10} + S_{12}$$
 (2) $2S_{12} = S_{11} + S_{10}$ (3) $S_{12} = S_{11} + S_{10}$ (4) $2S_{11} = S_{12} + S_{10}$

Official answer NTA(3) Ans.

Sol.

Question ID: 533543485

17. An urn contains 6 white and 9 black balls. Two successive draws of 4 balls are made without replacement. The probability, that the first draw gives all white balls and the second draw gives all black balls, is:

$$(1)\frac{3}{715}$$

(2)
$$\frac{5}{715}$$

$$(3) \frac{3}{256}$$

$$(4) \frac{5}{250}$$

Official answer NTA(1) Ans.

Sol.

Question ID: 533543484

The position vectors of the vertices A, B and C of a triangle are $2\hat{i} - 3\hat{j} + 3\hat{k}$, $2\hat{i} + 2\hat{j} + 3\hat{k}$ and $-\hat{i} + \hat{j} + 3\hat{k}$ 18. respectively. Let I denotes the length of the angle bisector AD of \(\subseteq BAC \) where D is on the line segment BC, then $2l^2$ equals :

Official answer NTA(4) Ans.

Sol.

Question ID: 533543471

Let $\alpha = \frac{(4!)!}{(4!)^{3!}}$ and $\beta = \frac{(5!)!}{(5!)^{4!}}$. Then: 19.

(1)
$$\alpha \notin N$$
 and $\beta \in N$

(2)
$$\alpha \in N$$
 and $\beta \in N$

(3)
$$\alpha \notin N$$
 and $\beta \notin N$

(4)
$$\alpha \in N$$
 and $\beta \notin N$

Ans. Official answer NTA(2)

Sol.

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-2

Question ID: 533543475

20. Consider the function $f:(0, 2) \to R$ defined by $f(x) = \frac{x}{2} + \frac{2}{x}$ and the function g(x) defined by

$$g(x) = \begin{cases} \min(f(t)), & 0 < t \le x \text{ and } 0 < x \le 1 \\ \frac{3}{2} + x, & 1 < x < 2 \end{cases}$$
. Then:

- (1) g is continuous but not differentiable at x=1 (2) g is continuous and differentiable for all $x \in (0, 2)$
- (3) g is not continuous for all $x \in (0, 2)$
- (4) g is neither continuous nor differentiable at x = 1

Ans. Official answer NTA(1)

Sol.

SECTION - B

Question ID: 533543490

The coefficient of x^{2012} in the expansion of $(1-x)^{2008}(1+x+x^2)^{2007}$ is equal to ______

Ans. Official answer NTA(0)

Sol.

Question ID: 533543487

22. Let the complex numbers α and $\frac{1}{\overline{\alpha}}$ lie on the circle $|z - z_0|^2 = 4$ and $|z - z_0|^2 = 16$ respectively, where $z_0 = 1 + i$. Then, the value of $100 |\alpha|^2$ is _____.

Ans. Official answer NTA (20)

Sol.

Question ID: 533543489

23. If the sum of squares of all real values of α , for which the lines 2x - y + 3 = 0, 6x + 3y + 1 = 0 and ax + 2y - 2 = 0 do not form a triangle is p, then the greatest integer less than or equal to p is _____.

Ans. Official answer NTA (32)

Sol.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-2

Question ID: 533543493

24. If the solution curve, of the differential equation $\frac{dy}{dx} = \frac{x+y-2}{x-y}$ passing through the point (2, 1) is

$$\tan^{-1}\left(\frac{y-1}{x-1}\right) - \frac{1}{\beta}\log_{e}\left(\alpha + \left(\frac{y-1}{x-1}\right)^{2}\right) = \log_{e}|x-1|, \text{ then } 5\beta + \alpha \text{ is equal to } \underline{\hspace{1cm}}.$$

Ans. Official answer NTA(11)

Sol.

Question ID: 533543488

25. Let A be a 2×2 real matrix and I be the identity matrix of order 2. If the roots of the equation |A - x I| = 0 be -1 and 3, then the sum of the diagonal elements of the matrix A^2 is _____.

Ans. Official answer NTA(10)

Sol.

Question ID: 533543491

26. Let $f(x) = \int_0^x g(t) \log_e \left(\frac{1-t}{1+t}\right) dt$, where g is a continuous odd function.

If
$$\int_{-\pi/2}^{\pi/2} \left(f(x) + \frac{x^2 \cos x}{1 + e^x} \right) dx = \left(\frac{\pi}{\alpha} \right)^2 - \alpha$$
, then α is equal to ______.

Ans. Official answer NTA(2)

Sol.

Question ID: 533543494

- Consider a circle $(x \alpha)^2 + (y \beta)^2 = 50$ where α , $\beta > 0$. If the circle touches the line y + x = 0 at the point P, whose distance from the origin is $4\sqrt{2}$, then $(\alpha + \beta)^2$ is equal to _____.
- Ans. Official answer NTA(100)

Sol.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-2

Question ID: 533543496

28. The mean and standard deviation of 15 observations were found to be 12 and 3 respectively. On rechecking it was found that an observation was read as 10 in place of 12. If μ and σ^2 denote the mean and variance of the correct observations respectively, then $15(\mu + \mu^2 + \sigma^2)$ is equal to

Ans. Official answer NTA (2521)

Sol.

Question ID: 533543495

The line $\frac{x-2}{2} = \frac{y}{-2} = \frac{z-7}{16}$ and $\frac{x+3}{4} = \frac{y+2}{3} = \frac{z+2}{1}$ intersect at the point P. If the distance of P from the line $\frac{x+1}{2} = \frac{y-1}{3} = \frac{z-1}{1}$ is l, then $14l^2$ is equal to _____.

Ans. Official answer NTA (108)

Sol.

Question ID: 533543492

30. If the area of the region $\{(x, y): 0 \le y \le \min\{2x, 6x - x^2\}\}\$ is A, then 12 A is equal to _____.

Ans. Official answer NTA (304)