JEE Main January 2024 Question Paper With Text Solution 27 January | Shift-1

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-1

JEE MAIN JANUARY 2024 | 27TH JANUARY SHIFT-1

SECTION - A

Ouestion	\mathbf{ID}	533	\$5.	433	186	í
Oucsuon	ш	222	,	サンレ	yοι	,

1.	If the shortest distance of the parabola $y^2 = 4x$ from the centre of the circle $x^2 + y^2 - 4x - 16y + 64 = 0$ is d, then
	d^2 is equal to :

(1) 16

(2)20

(3)36

(4)24

Ans. Official answer NTA(2)

Sol.

Question ID: 533543389

2. Let x = x(t) and y = y(t) be solutions of the differential equations $\frac{dx}{dt} + ax = 0$ and $\frac{dy}{dt} + by = 0$ respectively, a, $b \in R$. Given that x(0) = 2; y(0) = 1 and 3y(1) = 2x(1), the value of t, for which x(t) = y(t), is:

lag 2

 $(1)\log_3 4$

 $(2) \log_{\frac{2}{3}} 2$

 $(3)\log_4 3$

(4) $\frac{\log_4 2}{\frac{3}{3}}$

Ans. Official answer NTA(2)

Sol.

Question ID:533543383

3. The number of common terms in the progressions 4,9,14,19,...., upto 25th term and 3,6,9,12,....., upto 37th term is

यिकं

(1)7

(2)9

(3)8

(4)5

Ans. Official answer NTA(1)

Sol.

Question ID:533543391

4. The portion of the lijne 4x + 5y = 20 in the first quadrant is trisected by the lines L_1 and L_2 passing through the origin. The tangent of an angle between the lines L_1 and L_2 is:

 $(1)\frac{8}{5}$

 $(2)\frac{2}{5}$

 $(3) \frac{30}{41}$

 $(4) \frac{25}{41}$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-1

Ans. Official answer NTA(3)

Sol.

Question ID:533543385

5. If
$$a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} - \sqrt{2}}{x^4}$$
 and $b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} - \sqrt{1 + \cos x}}$, then the value of ab^3 is :

(1)36

(2)25

(3)32

(4)30

Ans. Official answer NTA(3)

Sol.

Question ID:533543380

6. Consider the matrix $f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Given below are two statements:

Statement I: f(-x) is the inverse of the matrix f(x).

Statement II: f(x) f(y) = f(x + y).

In the light of the above statements, choose the correct answer from the options given below

- (1) Both statement I and statement II are false.
- (2) Statement I is true but statement II is false.
- (3) Both statement I and statement II are true.
- (4) Statement I is false but statement II is true.

Ans. Official answer NTA(3)

Sol.

Question ID: 533543382

7. If A denotes the sum of all the coefficients in the expansion of $(1-3x+10x^2)^n$ and B denotes the sum of all the coefficients in the expansion of $(1+x^2)^n$, then:

(1) $B = A^3$

(2) 3A = B

 $(3) A = B^3$

(4) A = 3B

Ans. Official answer NTA(3)

Sol.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question ID: 533543387

- 8. If $\int_0^1 \frac{1}{\sqrt{3+x} + \sqrt{1+x}} dx = a + b\sqrt{2} + c\sqrt{3}$, where a, b, c are rational numbers, then 2a + 3b 4c is equal to :
 - (1)10
- (2)7
- (3)4
- (4)8

Ans. Official answer NTA(4)

Sol.

Question ID: 533543384

9. Consider the function.

where [x] denotes the greatest integer less than or equal to x. If S denotes the set of all ordered pairs (a, b) such that f(x) is continuous at x = 3, then the number of elements in S is:

- (1)1
- (2)2
- (3) Infinitely many
- (4)4

Ans. Official answer NTA(1)

Sol.

Question ID: 533543388

10. If (a, b) be the orthocentre of the triangle whose vertices are (1,2), (2,3) and (3,1), and $I_1 = \int_a^b x \sin(4x - x^2) dx$,

$$I_2 = \int_a^b \sin(4x - x^2) dx$$
, then $36 \frac{I_1}{I_2}$ is equal to :

- (1)72
- (2)88
- (3)66
- (4)80

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email:smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-1

Ans. Official answer NTA(1)

Sol.

Question ID: 533543396

- 11. Let a_1 , a_2 ,, a_{10} be 10 observations such that $\sum_{k=1}^{10} a_k = 50$ and $\sum_{\forall k < j} a_k \cdot a_j = 1100$. Then the standard deviation of a_1 , a_2 ,, a_{10} is equal to :
 - $(1) \sqrt{115}$
- **(2)** 10
- (3) $\sqrt{5}$
- (4) 5

Ans. Official answer NTA(3)

Sol.

Question ID: 533543393

- 12. The distance of the point (7, -2, 11) from the line $\frac{x-6}{1} = \frac{y-4}{0} = \frac{z-8}{3}$ along the line $\frac{x-5}{2} = \frac{y-1}{-3} = \frac{z-5}{6}$ is:
 - (1) 18
- (2)12
- (3) 14
- (4)21

Ans. Official answer NTA(3)

Sol.

Question ID: 533543394

- 13. If the shortest distance between the lines $\frac{x-4}{1} = \frac{y+1}{2} = \frac{z}{-3}$ and $\frac{x-\lambda}{2} = \frac{y+1}{4} = \frac{z-2}{-5}$ is $\frac{6}{\sqrt{5}}$, then the sum of all possible values of λ is:
 - (1) 5
- (2)7
- (3) 10
- (4) 8

Ans. Official answer NTA(4)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-1

Question ID: 533543390

14. Four distinct points (2k, 3k), (1,0), (0,1) and (0,0) lie ion a circle for k equal to:

- $(1)\frac{3}{13}$
- $(2)\frac{1}{13}$
- $(3) \frac{5}{13}$
- $(4) \frac{2}{13}$

Ans. Official answer NTA(3)

Sol.

Question ID: 533543392

15. The length of the chord of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to :

- (1) $\frac{\sqrt{1691}}{5}$
- (2) $\frac{\sqrt{2009}}{5}$
- (3) $\frac{\sqrt{1541}}{5}$
- $(4) \frac{\sqrt{1741}}{5}$

Ans. Official answer NTA(1)

Sol.

Question ID: 533543395

16. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 3(\hat{i} - \hat{j} + \hat{k})$. Let \vec{c} be the vector such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$. Then $\vec{a} \cdot ((\vec{c} \times \vec{b}) - \vec{b} - \vec{c})$ is equal to:

- (1)36
- (2)24
- (3)32
- (4)20

Ans. Official answer NTA(2)

Sol.

Question ID: 533543377

- 17. Let $S = \{1,2,3,...,10\}$. Suppose M is the set of all the subsets of S, then the relation $R = \{(A,B): A \cap B \neq \emptyset; A,B \in M\}$ is:
 - (1) symmetric only
 - (2) symmetric and transitive only
 - (3) symmetric and reflexive only
 - (4) reflexive only

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email:smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-1

Ans. Official answer NTA(1)

Sol.

Question ID: 533543378

- 18. The function $f: N \{1\} \rightarrow N$; is defined by f(n) = the highest prime factor of n, is:
 - (1) neither one-one nor onto
- (2) onto only

(3) one-one only

(4) both one-one and onto

Ans. Official answer NTA(1)

Sol.

Question ID: 533543379

- 19. If $S = \{z \in C : |z i| = |z + i| = |z 1|\}$, then n(S) is :
 - (1)2
- (2)0
- (3)3
- (4)1

Ans. Official answer NTA(4)

Sol.

Question ID: 533543381

20.
$${}^{n-1}C_r = (k^2 - 8) {}^nC_{r+1}$$
 if and only if::

(1)
$$2\sqrt{2} < k \le 3$$

(2)
$$2\sqrt{3} < k < 3\sqrt{3}$$

(3)
$$2\sqrt{3} < k \le 3\sqrt{2}$$

(4)
$$2\sqrt{2} < k < 2\sqrt{3}$$

Ans. Official answer NTA(1)

Sol.

SECTION - B

Question ID: 533543399

21. Let for a differentiable function $f:(0,\infty)\to R$, $f(x)-f(y)\geq \log_e\left(\frac{x}{y}\right)+x-y$, $\forall x,y\in(0,\infty)$. Then $\sum_{n=1}^{20}f'\left(\frac{1}{n^2}\right) \text{ is equal to }\underline{\qquad}.$

Ans. Official answer NTA (2890)

Sol.

Question ID: 533543402

22. Let the area of the region $\{(x,y): x-2y+4\geq 0, x+2y^2\geq 0, x+4y^2\leq 8, y\geq 0\}$ be $\frac{m}{n}$, where m and n are coprime numbers. Then m+n is equal to _____.

Ans. Official answer NTA(119)

Sol.

Question ID: 533543397

23. If a satisfies the equation $x^2 + x + 1 = 0$ and $(1 + \alpha)^7 = A + B\alpha + C\alpha^2$, A, B, C \leq 0, then 5(3A - 2B - C) is equal to _____.

Ans. Official answer NTA(5)

Sol.

Question ID: 533543398

- 24. Let $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $B = [B_1, B_2, B_3]$, where B_1, B_2, B_3 are column matrics, and $AB_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $AB_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$,
 - $AB_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$. If $\alpha = |B|$ and β is the sum of all the diagonal elements of B, then $\alpha^3 + \beta^3$ is equal to _____.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-1

Ans. Official answer NTA (28)

Sol.

Question ID: 533543400

25. If
$$8 = 3 + \frac{1}{4}(3+p) + \frac{1}{4^2}(3+2p) + \frac{1}{4^3}(3+3p) + \dots \infty$$
, then the value of p is ______.

Ans. Official answer NTA (9)

Sol.

Question ID: 533543401

26. Let
$$f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3)$$
, $x \in \mathbb{R}$. Then $f'(10)$ is equal to

Ans. Official answer NTA (202)

Sol.

Question ID: 533543405

- 27. A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required and let a = P(X = 3), $b = P(X \ge 3)$ and $c = P(X \ge 6x \ge 3)$. Then $\frac{b+c}{a}$ is equal to ______.
- Ans. Official answer NTA(12)

Sol.

Question ID: 533543404

- 28. The least positive integral value of α , for which the angle between the vectors $\alpha \hat{i} 2\hat{j} + 2\hat{k}$ and $\alpha \hat{i} 2\alpha\hat{j} 2\hat{k}$ is acute, is _____.
- **Ans.** Official answer NTA(5)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 27 January Shift-1

Question ID: 533543406

29. Let the set of all $a \in R$ such that the equation $\cos 2x + a \sin x = 2a - 7$ has a solution be [p, q] and $r = \tan 9^{\circ} - \tan 27^{\circ} - \frac{1}{\cot 63^{\circ}} + \tan 81^{\circ}$, then pqr is equal to _____.

Ans. Official answer NTA (48)

Sol.

Question ID: 533543403

30. If the solution of the differential equation (2x + 3y - 2) dx + (4x + 6y - 7) dy = 0, y(0) = 3, is $\alpha x + \beta y + 3 \log_e |2x + 3y - \gamma| = 6$, then $\alpha + 2\beta + 3\gamma$ is equal to _____.

Ans. Official answer NTA (29)

Sol.

MATRIX JEE ACADEMY