JEE Main February 2021 Question Paper With Text Solution 26 Feb.| Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

Question Paper With Text Solution (Mathematics)

JEE Main February 2021 | 26 Feb. Shift-2

JEE MAIN FEB 2021 | 26th FEB SHIFT-2 SECTION - A

1. The sum of the series
$$\sum_{n=1}^{\infty} \frac{n^2 + 6n + 10}{(2n+1)!}$$
 is equal to :

(1)
$$-\frac{41}{8}e + \frac{19}{8}e^{-1} - 10$$
 (2) $\frac{41}{8}e + \frac{19}{8}e^{-1} + 10$
(3) $\frac{41}{8}e - \frac{19}{8}e^{-1} - 10$ (4) $\frac{41}{8}e + \frac{19}{8}e^{-1} - 10$

Ans. Official Answer NTA : (3)

Sol.
$$\sum_{n=1}^{\infty} \frac{n^{2} + 6n + 10}{(2n + 1)!}$$

put 2n + 1 = r
for n = {1, 2, 3,}
r = {3, 5, 7,}

$$= \sum_{r=3,5,7,...} \frac{\left(\frac{r-1}{2}\right)^{2} + 6 \cdot \left(\frac{r-1}{2}\right) + 10}{r!}$$

$$= \sum_{r=3,5,7,...} \frac{(r-1)^{2} + 12(r-1) + 10}{4!r}$$

$$= \sum_{r=3,5,7,...} \frac{r^{2} + 10r + 29}{4!r}$$

$$= \sum_{r=3,5,7,...} \frac{r(r-1) + 11r + 29}{4!r}$$

$$= \sum_{r=3,5,7,...} \frac{r(r-1) + 11r + 29}{4!r}$$

$$= \sum_{r=3,5,7,...} \left(\frac{1}{4(r-2)!} + \frac{11}{4(r-1)!} + \frac{29}{4} \cdot \frac{1}{r!}\right)$$

$$= \frac{1}{4} \left(\frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \dots \right) + \frac{11}{4} \left(\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots \right) + \frac{29}{4} \left(\frac{1}{3!} + \frac{1}{5!} + \frac{1}{7!} + \dots \right)$$

$$= \frac{1}{4} \left(\frac{e - \frac{1}{e}}{2}\right) + \frac{11}{4} \left(\frac{e + \frac{1}{2}}{2}\right) + \frac{29}{4} \left(\frac{e - \frac{1}{2}}{2}\right)$$

$$\Rightarrow f(x) + f\left(\frac{1}{x}\right) = \frac{(\ln x)^2}{2}$$
$$\therefore f(e) + f\left(\frac{1}{e}\right) = \frac{1}{2} = \frac{1}{2}$$

ATRIX

3. Let slope of the tangent line to a curve at any point P(x, y) be given by $\frac{xy^2 + y}{x}$. If the curve intersects

the line x + 2y = 4 at x = -2, then the value of y, for which the point (3, y) lies on the curve, is :

(1)
$$-\frac{18}{19}$$
 (2) $\frac{18}{35}$ (3) $-\frac{18}{11}$ (4) $-\frac{4}{3}$
Ans. Official Answer NTA : (1)
Sol. $\frac{dy}{dx} = \frac{xy^2 + y}{x}$
 $\Rightarrow \frac{dy}{dx} = y^2 + \frac{1}{x}y$
 $\Rightarrow \frac{1}{y^2}\frac{dy}{dx} - \frac{1}{y} \cdot \frac{1}{x} = 1$
put $-\frac{1}{y} = z$
 $\frac{1}{y^2}\frac{dy}{dx} = \frac{dz}{dx}$
 $\Rightarrow \frac{dz}{dx} + z \cdot \frac{1}{x} = 1$
IF $= c\int_x^{1/4x} = x$
 $\Rightarrow z \cdot x = \int x \cdot 1 dx + c$
 $\Rightarrow z \cdot x = \frac{x^2}{2} + c$
 $\Rightarrow \therefore z = \frac{x}{2} + \frac{c}{x}$
 $\therefore -\frac{1}{y} = \frac{x}{2} + \frac{c}{x} = \frac{x^2 + 2c}{2x}$
 $\therefore y = \frac{-2x}{x^2 + 2c}$ (i)
MATCHY LEE ACADEMY

- \therefore Curve intersect the line x + 2y = 4 at x = -2
- 1.e. -2 + 2y = 4 : y = 3
- \therefore (-2, 3) lies on the curve

$$\therefore 3 = \frac{-2 \times (-2)}{4 + 2c}$$

 \Rightarrow 12 + 6c = 4

$$6c = -8 \qquad \qquad \therefore c = -\frac{4}{3}$$

The equation of the required curve is

$$y = \frac{-2x}{x^2 - \frac{8}{3}}$$
$$\therefore y = \frac{6x}{8 - 3x^2}$$
when x = 3

$$y = \frac{18}{8 - 27} \qquad \qquad \therefore y = -\frac{18}{19}$$

4. Let f(x) be a differentiable function at x = a with f'(a) = 2 and f(a) = 4. Then $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ equals :

(1) 2a - 4 (2) 2a + 4 (3) 4 - 2a (4) a + 4

Ans. Official Answer NTA : (3)

Sol.
$$\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$$
 $\left(\frac{0}{0}\right)$

Apply L' Hospital Rule

$$= \lim_{x \to a} \frac{f(a) - a \cdot f^{1}(x)}{1}$$
$$= f(a) - a \cdot f^{1}(a)$$
$$= 4 - a \cdot 2$$
$$= 4 - 2a$$

5. Let $F_1(A, B, C) = (A \land \neg B) \lor [\neg C \land (A \lor B)] \lor \neg A$ and $F_2(A, B) = (A \lor B) \lor (B \to \neg A)$ be two

logical expressions. Then :

- (1) F_1 is not a tautology but F_2 is a tautology
- (2) Both F_1 and F_2 are not tautologies
- (3) F_1 and F_2 both are tautologies
- (4) F_1 is a tautology but F_2 is not a tautology

Ans. Official Answer NTA : (1)

Α	В	С	$\sim B$	$A \wedge \sim B$	$A \lor B$	~ C	$\sim C \land (A \lor B)$	
Т	Т	Т	F	F	Т	F	F	
Т	F	F	Т	Т	Т	Т	Т	
Т	Т	F	F	F	Т	Т	Т	
Т	F	Т	Т	Т	Т	F	F	
F	Т	Т	F	F	Т	F	F	
F	F	F	Т	F	F	Т	F	
F	Т	F	F	F	Т	Т	Т	
F	F	Т	Т	F	F	F	F	

Sol.

$(A \wedge \sim B) \vee [-C \wedge (A \vee B)]$	~ A	$(A \land \sim B) \lor [-C \land (A \land \sim B)] \lor \sim A$
F	F	F
Ť	F	Т
M ^P T	F	Т
Т	F	Т
F	Т	Т
F	Т	Т
Т	Т	Т
F	Т	Т

F₁ is not a tautology

Α	В	~ A	$A \lor B$	$B \rightarrow \sim A$	$(\mathbf{A} \lor \mathbf{B}) \lor (\mathbf{B} \to \sim \mathbf{A})$
Т	F	F	Т	Т	Т
Т	Т	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	Т	Т

 F_2 is a tautology

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

Let $A = \{1, 2, 3, \dots, 10\}$ and $f : A \rightarrow A$ be defined as 6. $f(k) = \begin{cases} k+1 & \text{if } k \text{ is odd} \\ k & \text{if } k \text{ is even} \end{cases}$ Then the number of possible functions $g: A \rightarrow A$ such that gof = f is : $(1)^{10}C_5$ $(2) 10^5$ (3) 5! $(4) 5^{5}$ Official Answer NTA : (2) Ans. Sol. g(f(x)) = f(x) \Rightarrow g(x) = x, when x is even so total number of functions g from A to A $= 10^{5} \cdot 1$ $= 10^{5}$ A natural number has prime factorization given by $n = 2^{x}3^{y}5^{z}$, where y and z are such that y + z = 5 and 7. $y^{-1} + z^{-1} = \frac{5}{6}$, y > z. Then the number of odd divisors of n, including 1, is : (1) 12(2) 6x(3) 6(4) 11Official Answer NTA : (1) Ans. Sol. $n = 2^{x}3^{y}5^{z}$ $\therefore y + z = 5$(i) $\frac{1}{v} + \frac{1}{z} = \frac{5}{6}$(ii) $\frac{y+z}{vz} = \frac{5}{6}$ \therefore yz = 6(iii) $\therefore y > z$ \therefore y = 3, z = 2 \therefore Number of odd divisors = 1 · (3 + 1) (2 + 1) = 4 × 3 = 12 If 0 < a, b < 1, and $\tan^{-1} a + \tan^{-1} b = \frac{\pi}{4}$, then the value of $(a+b) - \left(\frac{a^2 + b^2}{2}\right) + \left(\frac{a^3 + b^3}{3}\right) - \left(\frac{a^4 + b^4}{4}\right) + \dots$ 8. is :

Question Paper With Text Solution (Mathematics)

JEE Main February 2021 | 26 Feb. Shift-2

(1)
$$\log_{e}\left(\frac{e}{2}\right)$$
 (2) $e^{2} - 1$ (3) $\log_{e} 2$ (4) e^{2}

Ans. Official Answer NTA : (3)

Sol. $\because \tan^{-1} a + \tan^{-1} b = \frac{\pi}{4}$ $\Rightarrow \tan^{-1} a = \frac{\pi}{4} - \tan^{-1} b$ $\Rightarrow \tan(\tan^{-1} a) = \tan\left(\frac{\pi}{4} - \tan^{-1} b\right)$ $\Rightarrow a = \frac{1-b}{1+b}$ $\Rightarrow a + ab = 1 - b$ a + b + ab = 1(i) $\because (a + b) - \left(\frac{a^2 + b^2}{2}\right) + \left(\frac{a^3 + b^3}{3}\right) - \left(\frac{a^4 + b^4}{4}\right) + \dots$ $= \left(a - \frac{a^2}{2} + \frac{a^3}{3} - \frac{a^4}{4} + \dots\right) + \left(b - \frac{b^2}{2} + \frac{b^3}{3} - \frac{b^4}{4} + \dots\right)$ $= \ln(1 + a) + \ln(1 + b)$ $= \ln((1 + a) + \ln(1 + b))$ $= \ln((1 + a) + \ln b)$ $= \ln((1 + a) + \ln(1 + b))$ $= \ln(1 + 1) = \ln 2$

9. Consider the following system of equations :

x + 2y - 3z = a2x + 6y - 11z = b

$$\mathbf{x} - 2\mathbf{y} + 7\mathbf{z} = \mathbf{c},$$

where a, b and c are real constants. Then the system of equations :

(1) has no solution for all a, b and c (2) has infinite number of solutions when 5a = 2b + c

(3) has a unique solution when 5a = 2b + c (4) has a unique solution for all a, b and c

Official Answer NTA : (2) Ans. $\mathbf{D} = \begin{vmatrix} 1 & 2 & -3 \\ 2 & 6 & -11 \\ 1 & -2 & 7 \end{vmatrix}$ Sol. = 1 (42 - 22) - 2 (14 + 11) - 3 (-4 - 6)= 20 - 50 + 30 = 0 $D_{x} = \begin{vmatrix} a & 2 & -3 \\ b & 6 & -11 \\ c & -2 & 7 \end{vmatrix}$ = a [42 - 22] - b [14 - 6] + c (-22 + 18)= 20a - 8b - 4c= 4 [5a - 2b - c] $D_{y} = \begin{vmatrix} 1 & a & -3 \\ 2 & b & -11 \\ 1 & c & 7 \end{vmatrix}$ = -5 [5a - 2b - c] $D_{z} = \begin{vmatrix} 1 & 2 & a \\ 2 & 6 & b \\ 1 & -2 & c \end{vmatrix}$ = -2 [5a - 2b - c]for 5a - 2b - c = 0, $D_x = D_y = D_z = 0$: system has infinite number of solutions when 5a = 2b + cLet A_1 be the area of the region bounded by the curves y = sinx, y = cosx and y-axis in the first quadrant. 10.

Also, let A₂ be the area of the region bounded by the curves y = sinx, y = cosx, x-axis and $x = \frac{\pi}{2}$ in the first quadrant. Then,

Question Paper With Text Solution (Mathematics)

JEE Main February 2021 | 26 Feb. Shift-2

(1) $A_1 = A_2$ and $A_1 + A_2 = \sqrt{2}$

(3)
$$A_1 : A_2 = 1 : \sqrt{2} \text{ and } A_1 + A_2 = 1$$

(2)
$$2A_1 = A_2$$
 and $A_1 + A_2 = 1 + \sqrt{2}$

$$1: \sqrt{2} \text{ and } \mathbf{A}_1 + \mathbf{A}_2 = 1$$
 (4) $\mathbf{A}_1:$

(4)
$$A_1 : A_2 = 1 : 2$$
 and $A_1 + A_2 = 1$

Official Answer NTA : (3) Ans.

11. Let $f : R \rightarrow R$ be defined as :

$$f(x) = \begin{cases} 2\sin\left(-\frac{\pi x}{2}\right), & \text{if } x < -1 \\ |ax^2 + x + b|, & \text{if } -1 \le x \le 1 \\ \sin(\pi x), & \text{if } x > 1 \end{cases}$$

If f(x) is continuous on R, then a + b equals :

	MATD	Question F	Paper With	Text Solution (Mathematics)				
MATRIX		JI	EE Main Febr	uary 2021 26 Feb. Shift-2				
	(1) 3	(2) 1	(3) - 3	(4) – 1				
Ans.	Official Answer NT	TA : (4)						
Sol.	Doubtful points : {-	-1,1}						
	at $x = -1$:	f(-1) = a + b - 1						
		LHL = $2\sin\frac{\pi}{2} = 2$						
		RHL = a + b - 1						
	for continuity at x =	= — 1						
		a + b - 1 = 2	(i)					
	at $x = 1$	f(1) = a + b + 1						
		LHL = a + b + 1						
		$RHL = \sin \pi = 0$						
for continuity at $x = 1$								
		a+b+1 = 0						
		$\Rightarrow a + b + 1 = 0$						
		$\therefore a+b=-1$	(ii)					
	\therefore for $a + b = -1$							
		a+b-1 = -1-1	=2					
	f(x) is continuous at $x = -1$ and $x = 1$							
	\Rightarrow f(x) is continuou	is on R						
	$\therefore a+b=-1$							
12.	If the locus of the n	nid-point of the line seg	gment from the	point (3, 2) to a point on the circle, $x^2 + y^2 =$				
	is a circle of radius	r, then r is equal to :						
	(1) 1	(2) $\frac{1}{3}$	(3) $\frac{1}{2}$	(4) $\frac{1}{4}$				

- Ans. Official Answer NTA : (3)
- Sol. P is the mid-point of AB

$$h = \frac{3 + \cos \theta}{2}$$

$$k = \frac{2 + \sin \theta}{2}$$

$$\cos \theta = 2h - 3$$

$$\sin \theta = 2k - 2$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\Rightarrow (2k - 2)^2 + (2h - 3)^2 = 1$$

$$\left(h - \frac{3}{2}\right)^2 + (k - 1)^2 = \frac{1}{4}$$

$$\therefore \left(x - \frac{3}{2}\right)^2 + (y - 1)^2 = \left(\frac{1}{2}\right)$$

$$\therefore r = \frac{1}{2}$$

13. If vectors $\vec{a_1} = x\hat{i} - \hat{j} + \hat{k}$ and $\vec{a_2} = \hat{i} + y\hat{j} + z\hat{k}$ are collinear, then a possible unit vector parallel to the vector $x\hat{i} + y\hat{j} + z\hat{k}$ is :

(1)
$$\frac{1}{\sqrt{2}} \left(-\hat{j} + \hat{k} \right)$$
 (2) $\frac{1}{\sqrt{3}} \left(\hat{i} + \hat{j} - \hat{k} \right)$ (3) $\frac{1}{\sqrt{3}} \left(\hat{i} - \hat{j} + \hat{k} \right)$ (4) $\frac{1}{\sqrt{2}} \left(\hat{i} - \hat{j} \right)$

- Ans. Official Answer NTA : (3)
- Sol. $\because \vec{a_1} \text{ and } \vec{a_2} \text{ are collinear}$ $\therefore \vec{a_1} = \lambda \vec{a_2}$ $(x\hat{i} - \hat{j} + \hat{k}) = \lambda(\hat{i} + y\hat{j} + z\hat{k})$ $\therefore x = \lambda$ $y \lambda = -1$ $z \lambda = 1$ $\therefore y = -\frac{1}{\lambda}$

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

$$\begin{aligned} \therefore z = \frac{1}{\lambda} \\ \therefore x\hat{i} + y\hat{j} + z\hat{k} \\ = \lambda\hat{i} - \frac{1}{\lambda}\hat{j} + \frac{1}{\lambda}\hat{k} \\ = \frac{1}{\lambda}(\lambda^2\hat{i} - \hat{j} + \hat{k}) \\ \therefore \text{ for } \lambda = 1 \\ \text{ a vector parallel to } x\hat{i} + y\hat{j} + z\hat{k} \\ = \hat{i} - \hat{j} + \hat{k} \\ \therefore \text{ unit vector } = \frac{1}{\sqrt{3}}(\hat{i} - \hat{j} + \hat{k}) \\ 14. \quad \text{Let } A(1, 4) \text{ and } B(1, -5) \text{ be two points. Let P be a point on the circle } (x - 1)^2 + (y - 1)^2 = 1 \text{ such that} \\ (PA)^2 + (PB)^2 \text{ have maximum value, then the points P, A and B lie on : \\ (1) a hyperbola (2) a straight line (3) a parabola (4) an ellipse \\ \text{Ans. Official Answer NTA : (2) } \\ \text{Sol. General point on the circle P } \\ = (1 + \cos \theta, 1 + \sin \theta) \\ PA^2 + (PB)^2 = (\cos \theta)^2 + (\sin \theta - 3)^2 + (\cos \theta)^2 + (\sin \theta + 6)^2 \\ = 2(\cos^2 \theta + \sin^2 \theta) - 6\sin \theta + 12\sin \theta \\ PA^2 + PB^2 - 2 + 12\sin \theta \\ PA^2 + PB^2 + 2 + 12\sin \theta \\ PA^2 + PB^2 + 2 + 12\sin \theta \\ PA^2 + PB^2 +$$

 \therefore P, A and B lie on the straight line x = 1.

Question Paper With Text Solution (Mathematics) JEE Main February 2021 | 26 Feb. Shift-2

If the mirror image of the point (1, 3, 5) with respect to the plane 4x - 5y + 2z = 8 is (α , β , γ), then

 $5(\alpha + \beta + \gamma)$ equals : (1) 41(2) 43(3) 47(4) 39 Official Answer NTA : (3) Ans. B is the mirror image of A w.r.t. the plane 4x - 5y + 22 = 8Sol. M is the mid-point of AB, which lies on the plane. A(1, 3, 5) DR of AB = DR of the normal= < 4, -5, 2 >4x - 5y + 2z = 8Eqⁿ of the line AB : Μ $\frac{x-1}{4} = \frac{y-3}{-5} = \frac{z-5}{2}$ B (α, β, γ) General point on AB $= (1 + 4\lambda, 3 - 5\lambda, 5 + 2\lambda)$ (Say M) For M : ·· M lies on the plane $4(1 + 4\lambda) - 5(3 - 5\lambda) + 2(5 + 2\lambda) = 8$ $\Rightarrow -1 + 45 \lambda = 8$ $45 \lambda = 9$ $\therefore \lambda = \frac{1}{5}$ $M = \left(1 + \frac{4}{5}, 3 - \frac{5}{5}, 5 + \frac{2}{5}\right)$ $=\left(\frac{9}{5},\frac{10}{5},\frac{27}{5}\right)$ $\therefore \frac{\alpha+1}{2} = \frac{9}{5} \qquad \qquad \therefore \alpha = \frac{13}{5}$ $\frac{\beta+3}{2} = \frac{10}{5}$ $\therefore \beta = \frac{5}{5}$

MATRIX

15.

	$\frac{\gamma+5}{2} = \frac{27}{5} \qquad \qquad \therefore \gamma = \frac{29}{5}$		
	$\alpha + \beta + \gamma = \frac{47}{5}$		
	$\Rightarrow 5(\alpha + \beta + \gamma) = 47$		
16.	A seven digit number is formed using digits	3, 3, 4, 4, 4, 5, 5. The	probability, that number so formed is
	divisible by 2, is :		
	(1) $\frac{6}{7}$ (2) $\frac{3}{7}$	$(3) \frac{4}{7}$	(4) $\frac{1}{7}$
Ans.	Official Answer NTA : (2)		
Sol.	Total number formed using the given digits	$=\frac{ \underline{7} }{ \underline{2} \underline{3} \underline{2} }$	
	For the number be divisible by 2		
	() ⁴		
	$=\frac{\underline{6}}{\underline{2}}$		
	$\therefore \text{ Required probability} = \frac{\underline{ 6 }}{\underline{ 2 2 2 }}$ $\frac{\underline{ 7 }}{\underline{ 2 3 2 }}$		
	$=\frac{\underline{6}}{\underline{7}} \times \frac{\underline{3}}{\underline{2}} = \frac{3}{7}$		
17.	Let $f(x) = \sin^{-1} x$ and $g(x) = \frac{x^2 - x - 2}{2x^2 - x - 6}$. If	$fg(2) = \lim_{x \to 2} g(x)$, then	the domain of the function fog is :
	(1) $(-\infty, -1] \cup [2, \infty)$	(2) (-∞,-2]∪[-1,∘	0)
	$(3) (-\infty, -2] \cup \left[-\frac{4}{3}, \infty\right)$	$(4) (-\infty, -2] \cup \left[-\frac{3}{2} \right]$	$,\infty \Big)$

ATRIX

Ans. Official Answer NTA : (3)

$$\therefore \mathbf{x} \in \left(-\infty, -2\right] \cup \left[-\frac{4}{3}, \infty\right] - \{2\}$$

.....(ii)

Using (i) and (ii)

MATRIX

Domain of fog is :

$$\left(-\infty,-2\right]\cup\left[-\frac{4}{3},\infty\right)$$

Let L be a line obtained from the intersection of two planes x + 2y + z = 6 and y + 2z = 4. If point 18. P(α , β , γ) is the foot of perpendicular from (3, 2, 1) on L, then the value of 21($\alpha + \beta + \gamma$) equals :

- (1) 102(3) 68(2) 142 (4) 136
- Official Answer NTA : (1) Ans.
- Sol. Let DR's of LOI are <a, b, c>

$$a + 2b + c = 0$$

0a + b + 2c = 0

$$\frac{a}{4-1} = \frac{b}{0-2} = \frac{c}{1-0}$$

$$\frac{1}{3} = \frac{1}{-2} = \frac{1}{1}$$

 \therefore DR' of line of intersection (LOI) = <3, -2, 1>

For a point on the LOI:

Let y = 0

x + z = 6.....(i)

2z = 4

.....(ii)

on solving (i) and (ii)

$$\therefore x = 4, z = 2$$

 \therefore (4, 0, 2) lies on the LOI

General point on the line :

 $(x, y, z) = (4 + 3\lambda, 0 - 2\lambda, 2 + \lambda)$

MATRIX

Let
$$(\alpha, \beta, \gamma) = (4+3\lambda, -2\lambda, 2+\lambda)$$

 $\therefore \alpha = 4+3\lambda$
 $\beta = -2\lambda$
 $\gamma = 2+\lambda$
DR of $AP = <3\lambda + 1, -2\lambda - 2, \lambda + 1>$
 $\therefore AP is \perp^{t}$ to the line
 $\therefore 3 (3\lambda + 1) - 2(-2\lambda - 2) + 1 (\lambda + 1) = 0$
 $\Rightarrow 14\lambda + 8 = 0$
 $\lambda = -\frac{4}{7}$
 $\alpha + \beta + \gamma - 6 + 2\lambda$
 $= 6+2\left(-\frac{4}{7}\right)$
 $= \frac{42-8}{7} = \frac{34}{7}$
 $21(\alpha + \beta + \gamma) = 21\times\frac{34}{7} = 102$
19. Let $f(x) - \sum_{0}^{x} e^{x}$ f(t)dt + e^{x} be a differentiable function for all x $\in \mathbb{R}$. Then $f(x)$ equals :
(1) $e^{(x-3)}$ (2) $2e^{(x-1)} - 1$ (3) $e^{x} - 1$ (4) $2e^{x} - 1$
Ans. Official Answer NTA : (2)
Sol. $f(x) - \sum_{0}^{x} e^{x} f(t) + e^{x}$ (i)
Differentiate (i) w.r.t 'x'
 $f'(x) = e^{x} f(x) + e^{x}$
 $\Rightarrow f'(x) = e^{x} (f(x) + 1)$
 $\Rightarrow \frac{f'(x)}{f(x) + 1} = e^{x}$
Integrating both sides

.....(ii)

$$\int \frac{f'(x)}{f(x)+1} dx = \int e^x dx$$

$$\Rightarrow \ln (f(x)+1) = e^x + c$$

$$f(x) + 1 = e^{(e^x + c)}$$

$$f(x) = e^{e^x} \cdot e^c - 1$$

Put x = 0 in (i)

$$f(0) = 0 + e^o = 1$$

Put x = 0 in (ii)

$$f(0) = e \cdot e^c - 1$$

$$\Rightarrow 1 = e \cdot e^c - 1$$

$$\Rightarrow e \cdot e^c = 2$$

$$\therefore e^c = \frac{2}{e}$$

$$f(x) = e^{e^x} \cdot \frac{2}{e} - 1$$

$$= 2(e^{(e^x - 1)}) - 1$$

20. The triangle of maximum area that can be inscribed in a given circle of radius 'r' is :

- (1) An equilateral triangle of height $\frac{2r}{3}$.
- (2) A right angle triangle having two of its sides of length 2r and r.
- (3) An equilateral triangle having each of its side of length $\sqrt{3}$ r.
- (4) An isosceles triangle with base equal to 2r.
- Ans. Official Answer NTA : (3)
- Sol. Area of \triangle ABC

$\Delta = \frac{abc}{4r}$	
A	G• C
Centroid G = $\left(\frac{A+B+C}{3}, \frac{\sin A + \sin B + \sin B}{3}\right)$	$\left(\frac{\mathbf{n}\mathbf{C}}{\mathbf{C}}\right)$
$\frac{\sin A + \sin B + \sin C}{3} \le \sin \left(\frac{A + B + C}{3}\right)$	
$\sin A + \sin B + \sin C \le \frac{3\sqrt{3}}{2}$	
$\frac{a}{2r} + \frac{b}{2r} + \frac{c}{2r} \le \frac{3\sqrt{3}}{2}$	
$\Rightarrow \frac{a+b+c}{3} \le \sqrt{3} r$	
$GM \leq A.M$	
$\left(abc\right)^{\frac{1}{3}} \le \frac{a+b+c}{3}$	
$\Rightarrow abc \le \left(\frac{a+b+c}{3}\right)^3$	
$\Rightarrow \frac{abc}{4r} \le \frac{1}{4r} \left(\frac{a+b+c}{3}\right)^3$	
$\Rightarrow \Delta \leq \frac{1}{4r} \left(\frac{a+b+c}{3} \right)^3 \leq \frac{1}{4r} \left(\sqrt{3} r \right)^3$	
$\Delta \leq \frac{3\sqrt{3}}{4}r^2$	
$\Delta_{\rm max} = \frac{3\sqrt{3}}{4}r^2$	(Equality holds when $a = b = c$)

 Δ is an equilateral Δ

$$a = \sqrt{3}r$$

SECTION – B

- 1. The total number of 4-digit numbers whose greatest common divisor with 18 is 3, is _____.
- Ans. Official Answer NTA : (1000)
- Sol. GCD(N, 18) = 3

Number must be an odd number and multiple of 3 and not a multiple of 9.

4-digit odd numbers multiple of 3 are :

1005, 1011,, 9999

Total such numbers are = 1500

4-digit odd number multiple of 9 are :

1017, 1035,, 9999

Total such numbers = 500

Required numbers = 1000.

- 2. Let the normals at all the points on a given curve pass through a fixed point (a, b). If the curve passes through (3, -3) and $(4, -2\sqrt{2})$, and given that $a 2\sqrt{2} b = 3$, then $(a^2 + b^2 + ab)$ is equal to _____.
- Ans. Official Answer NTA : (9)
- Sol. Equation of normal at P(x, y)

$$Y-y = \frac{1}{\frac{dy}{dx}}(X-x)$$

It passes through (a, b)

$$\Rightarrow b - y = -\frac{dx}{dy} (a - x)$$
$$\Rightarrow (b - y) dy = (x - a) dx$$

Integrate both sides

$$\int (b-y) \, dy = \int (x-a) \, dx$$
$$\Rightarrow by - \frac{y^2}{2} = \frac{x^2}{2} - ax$$

 $x^{2} + y^{2} - 2ax - 2by =0$ passes through (3, -3) and (4, -2√2) 9 + 9 - 6a + 6b = 0 ∴ a - b = 3(i) 16 + 8 - 8a + 4√2 b = 0 2a - √2 b = 6(ii) (i) × (2) - (ii) b (√2 - 2) = 0 b = 0 ∴ a = 3 ∴ a^{2} + b^{2} + ab = 3^{2} + 0 + 0 = 9.

3. Let X_1, X_2, \dots, X_{18} be eighteen observations such that $\sum_{i=1}^{18} (X_i - \alpha) = 36$ and $\sum_{i=1}^{18} (X_i - \beta)^2 = 90$, where α and β are distinct real numbers. If the standard deviation of these observations is 1, then the value of $|\alpha - \beta|$ is ______.

Ans. Official Answer NTA : (4)

Sol.
$$\sum_{i=1}^{18} (x_i - \alpha) = 36$$

$$\therefore \sum_{i=1}^{18} x_i - 18\alpha = 36$$

$$\sum_{i=1}^{18} x_i = 36 + 18\alpha$$

$$\sum_{i=1}^{18} (x_i - \beta)^2 = 90$$

$$\sum_{i=1}^{18} x_i^2 - 2\beta \sum_{i=1}^{18} x_i + 18\beta^2 = 90$$

$$\sum_{i=1}^{18} x_i^2 = 90 + 2\beta(36 + 18\alpha) - 18\beta^2$$

Variance of these observations

$$6^{2} = \frac{1}{18} \sum_{i=1}^{18} x_{i}^{2} - \left(\frac{\sum x_{i}}{18}\right)^{2}$$

$$\Rightarrow 1 = \frac{1}{18} (90 + 2\beta (36 + 18\alpha) - 18\beta^{2}) - (2 + 3\beta^{2}) + (2 + \alpha) - \beta^{2} - (\alpha + 2)^{2}$$

$$\Rightarrow 1 = 5 + 2\beta (2 + \alpha) - \beta^{2} - (\alpha + 2)^{2}$$

$$\Rightarrow (\alpha + 2)^{2} + \beta^{2} - 2\beta(\alpha + 2) = 4$$

$$\Rightarrow (\alpha + 2 - \beta)^{2} = 4$$

$$\Rightarrow (\alpha - \beta + 2)^{2} - 4 = 0$$

$$\Rightarrow (\alpha - \beta + 4) (\alpha - \beta) = 0$$

$$\because \alpha \neq \beta$$

$$\therefore \alpha - \beta + 4 = 0$$

$$\alpha - \beta = -4$$

- $\therefore |\alpha \beta| = 4$
- 4. Let a be an integer such that all the real roots of the polynomial $2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x + 10$ lie in the interval (a, a + 1). Then, |a| is equal to _____.

 $\alpha)^2$

Ans. Official Answer NTA : (2)

Sol. Let $P(x) = 2x^5 + 5x^4 + 10x^3 + 10x^2 + 10x + 10$

$$P'(x) = 10x^{4} + 20x^{3} + 30x^{2} + 20x + 10$$

$$P'(x) = 10x^{2} \left[x^{2} + 2x + 3 + \frac{2}{x} + \frac{1}{x^{2}} \right]$$

$$= 10x^{2} \left[x^{2} + \frac{1}{x^{2}} + 2\left(x + \frac{1}{x}\right) + 1 \right]$$

$$= 10x^{2} \left[\left(x + \frac{1}{x}\right)^{2} + 2\left(x + \frac{1}{x}\right) + 1 \right]$$

$$= 10x^{2} \left[x + \frac{1}{x} + 1 \right]^{2}$$

$$P'(x) = 10 \left[x^{2} + x + 1 \right]^{2} > 0$$

Question Paper With Text Solution (Mathematics) JEE Main February 2021 | 26 Feb. Shift-2

P(x) is an odd degree increasing polynomial function

$$\Rightarrow$$
 only one real root

MATRIX

P(0) = 10

P(-1) = -2 + 5 - 10 + 10 - 10 + 10 = 3

P(-2) = -64 + 80 - 80 + 40 - 20 + 10 = -34

$$P(-1) P(-2) < 0$$

Using Intermediate value theorem

 \Rightarrow P(x) = 0 has at least on root in the (-2, -1)

Since P(x) = 0 has exactly one real root

 \therefore all real roots lie in the interval (-2, -1)

$$\therefore a = -2$$
 $|a| = 2$

- 5. Let L be a common tangent line to the curves $4x^2 + 9y^2 = 36$ and $(2x)^2 + (2y)^2 = 31$. Then the square of the slope of the line L is _____.
- Ans. Official Answer NTA : (3)

Sol.
$$C_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$$
(i)
 $C_2: x^2 + y^2 = \frac{31}{4}$ (ii)

Let slope of common tangent be m.

Equetion of tangent of slope m to the ellipse (i)

this line is also tangent to circle (ii)

$$\frac{\left|\pm\sqrt{9m^2+4}\right|}{\sqrt{m^2+1}} = \sqrt{\frac{31}{4}} \quad \text{[condition of tangency for the circle]}$$
$$\Rightarrow \sqrt{9m^2+4} = \sqrt{\frac{31}{4}} \cdot \sqrt{m^2+1}$$

$$\Rightarrow 9m^{2} + 4 = \frac{31}{4} (m^{2} + 1)$$

$$\Rightarrow 36 m^{2} + 16 = 31m^{2} + 31$$

$$5m^{2} = 15$$

$$m^{2} = 3$$

6. If the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}$ satisfies the equation $A^{20} + \alpha A^{10} + \beta A \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ for some real numbers
 α and β , then $\beta - \alpha$ is equal to ______.
Ans. Official Answer NTA : (4)
Sol. $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}$
 $A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 3 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 3 & 0 & -1 \end{bmatrix}$
 $A^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 $A^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{3} & 0 \\ 3 & 0 & -1 \end{bmatrix}$
 $A^{4} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{4} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

By observing the pattren

7.

Ans.

Sol.

$\mathbf{A}^{20} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{20} & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\mathbf{A}^{19} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{19} & 0 \\ 3 & 0 & -1 \end{bmatrix}$
$A^{20} + 2A^{19} + \beta A = \begin{bmatrix} 1 + \alpha + \beta & 0 & 0 \\ 0 & 2^{20} + \alpha \cdot 2^{19} + 2\beta & 0 \\ 3\alpha + 3\beta & 0 & 1 - \alpha - \beta \end{bmatrix}$
$\alpha + \beta = 0$ and $2^{20} + \alpha \cdot 2^{19} + 2\beta = 4$
$2^{20} + \alpha \cdot 2^{19} - 2\alpha = 4$
$\Rightarrow 2^{19} (\alpha + 2) = 2(\alpha + 2)$
$(\alpha + 2) (2^{19} - 2) = 0$
$\alpha = -2$
$\therefore \beta = 2$
$\therefore \alpha - \beta = -2 - 2 = 4 $
$\beta-\alpha=2-(-2)=4.$
Let z be those complex numbers which satisfy $ z+5 \le 4$ and $z(1+i) + \overline{z}(1-i) \ge -10$, $i = \sqrt{-1}$. If the
maximum value of $ z + 1 ^2$ is $\alpha + \beta \sqrt{2}$, then the value of $(\alpha + \beta)$ is
Official Answer NTA : (48)
$ z+5 \le 4$
$(x + 5)^2 + y^2 \le 16$ (i)
$z(1+i) + \frac{1}{z}(1-i) \ge -10$
$(z+\bar{z})+i(z-\bar{z}) \ge -10$

 $x - y \ge -5$(ii)

|z+1| = Distance of z from (-1, 0)

 \Rightarrow 2x + i (2i y) \geq - 10

- $|z + 1|_{max} = PB$ for B solve $(x + 5)^2 + y^2 = 16$ and x - y = -5x + 5 = y $y^2 + y^2 = 16$ $\therefore y = \pm 2\sqrt{2}$ for B, $y = -2\sqrt{2}$ $(-5 - 2\sqrt{2}, -2\sqrt{2})$ $PB = \sqrt{(-4 - 2\sqrt{2})^2 + 8}$ $|z + 1|_{max}^2 = PB^2 = 8 + (4 + 2\sqrt{2})^2$ $= 32 + 16\sqrt{2}$ $\alpha = 32, \beta = 16$ $\therefore \alpha + \beta = 48$ Let α and β be two real numbers such
- 8. Let α and β be two real numbers such that $\alpha + \beta = 1$ and $\alpha \beta = -1$. Let $p_n = (\alpha)^n + (\beta)^n$, $p_{n-1} = 11$ and $p_{n+1} = 29$ for some integer $n \ge 1$. Then, the value of p_n^2 is _____.
- Ans. Official Answer NTA : (324)
- Sol. $\alpha + \beta = 1$
 - $\alpha\beta = -1$
 - $P_n = \alpha^n + \beta^n$
 - $P_{n+1} = a^{n+1} + b^{n+1}$

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

Page No. 27

$$= \alpha^{n} \cdot \alpha + \beta^{n} \cdot (\beta)$$

$$= \alpha^{n} \cdot (1 - \beta) + \beta^{n} \cdot (\beta)$$

$$= -\beta \cdot \alpha^{n} + \alpha^{n} + \beta^{n} - \alpha\beta^{n}$$

$$= -\alpha\beta (\alpha^{n+} + \beta^{n+}) (\alpha^{n} + \beta^{n})$$

$$P_{n+1} = P_{n-1} + P_{n}$$
for some $n \ge 1$

$$29 = 11 + P_{n}$$

$$P_{n} = 18$$

$$P_{n}^{2} = 324$$

Ans. Official Answer NTA : (1)

Sol.
$$I_{m,n} = \int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$

$$put x = \frac{1}{1+t} \qquad \therefore t = \frac{1}{x} - 1$$

$$dx = \frac{-1}{(1+t)^{2}} dt$$

$$= \int_{\infty}^{0} \frac{1}{(1+t)^{m-1}} \left(1 - \frac{1}{1+t}\right)^{n-1} \left(\frac{-1}{(1+t)^{2}}\right) dt$$

$$= -\int_{\infty}^{0} \frac{t^{n-1}}{(1+t)^{m-1}(1+t)^{n-1}} \left(\frac{1}{(1+t)^{2}}\right) dt$$

$$= \int_{0}^{\infty} \frac{t^{n-1}}{(1+t)^{m-1}(1+t)^{n-1}(1+t)^{2}} dt$$

$$= \int_{0}^{\infty} \frac{t^{n-1}}{(1+t)^{m+n}} dt$$

$$= \int_{0}^{1} \frac{t^{n-1}}{(1+t)^{m+n}} dt + \int_{1}^{\infty} \frac{t^{n-1}}{(1+t)^{m+n}} dt$$

$$\begin{split} I_{1} &= \int_{1}^{\infty} \frac{t^{n-1}}{(1+t)^{m+n}} dt \\ put t &= \frac{1}{z} \qquad \because dt = \frac{-1}{z^{2}} dz \\ &= \int_{1}^{0} \frac{1}{z^{n-1} \left(1 + \frac{1}{z}\right)^{m+n}} \cdot \left(\frac{-1}{z^{2}}\right) dz \\ &= -\int_{1}^{0} \frac{1}{z^{n-1} \left(\frac{z+1}{z}\right)^{m+n}} z^{2}} dz \\ I_{1} &= \int_{0}^{1} \frac{z^{m-1}}{(1+z)^{m+n}} dz \\ I_{1} &= \int_{0}^{1} \frac{t^{m-1}}{(1+z)^{m+n}} dt \\ I_{m,n} &= \int_{0}^{1} \frac{t^{n-1}}{(1+z)^{m+n}} dt + \int_{0}^{1} \frac{t^{m-1}}{(1+z)^{m+n}} dt \\ I_{m,n} &= \int_{0}^{1} \frac{t^{n-1} + t^{m-1}}{(1+z)^{m+n}} dt \\ I_{m,n} &= \int_{0}^{1} \frac{x^{n-1} + x^{m-1}}{(1+z)^{m+n}} dx \\ \vdots & \alpha &= 1 \end{split}$$

- 10. If the arithmetic mean and geometric mean of the pth and qth terms of the sequence $-16, 8, -4, 2, \dots$ satisfy the equation $4x^2 - 9x + 5 = 0$, then p + q is equal to _____.
- Ans. Official Answer NTA : (10)
- Sol. $4x^2 8x + 5 = 0$

x = 1 or x =
$$\frac{5}{4}$$

∴ A.M > G.M
∴ A.M = $\frac{5}{4}$ and G.M = 1

Let
$$p^{th}$$
 term = a
 q^{th} term = b
 $\frac{a+b}{2} = \frac{5}{4}$ and $\sqrt{ab} = 1$
 $\Rightarrow a + b = \frac{5}{2}$ and $ab = 1$
 $\therefore a = (-16) \left(\frac{-1}{2}\right)^{p-1}$ and $b = (-16) \left(\frac{-1}{2}\right)^{q-1}$
 $(-16) \left(\frac{-1}{2}\right)^{p-1} \times (-16) \left(\frac{-1}{2}\right)^{q-1} = 1$
 $\left(-\frac{1}{2}\right)^{p+q-2} = \left(\frac{1}{2}\right)^{8}$
 $p + q - 2 = 8$
 $p + q = 10$

ATRIX