JEE Main January 2025 Question Paper With Text Solution 24 January | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 24 January Shift-2

IEE MAIN JANUARY 2025 | 24TH JANUARY SHIFT-2

SECTION - A

Question ID: 656445453

- 1. The number of real solution(s) of the equation $x^2 + 3x + 2 = min\{|x-3|, |x+2|\}$ is:
 - (1)2
- (2)0
- (3)3
- (4) 1

Official answer NTA(1) Ans.

Sol.

Question ID: 656445452

- Let $A = \left\{ x \in (0, \pi) \left\{ \frac{\pi}{2} \right\} : \log_{(2/\pi)} |\sin x| + \log_{(2/\pi)} |\cos x| = 2 \right\}$ and 2. B = $\left\{ x \ge 0 : \sqrt{x} \left(\sqrt{x} - 4 \right) - 3 \left| \sqrt{x} - 2 \right| + 6 = 0 \right\}$. Then $n(A \cup B)$ is equal to :
 - (1)4

- (3)6
- (4) 8

Ans. Official answer NTA (4)

Sol.

Question ID: 656445467

- 3. Let [x] denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function f(x) = [x] + |x-2|, -2 < x < 3, is not continuous and not differentiable. Then m + n is equal to ::
 - (1)6

- (3)7
- (4)9

Official answer NTA(2) Ans.

Sol.

Question ID: 656445456

- If $7 = 5 + \frac{1}{7}(5 + \alpha) + \frac{1}{7^2}(5 + 2\alpha) + \frac{1}{7^3}(5 + 3\alpha) + \dots \infty$, then the value of α is: 4.
 - (1)1
- (2) $\frac{1}{7}$ (3) $\frac{6}{7}$
- (4)6

Official answer NTA (4) Ans.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 24 January Shift-2

Sol.

Question ID: 656445457

- 5. In an arithmetic progression, if $S_{40} = 1030$ and $S_{12} = 57$, then $S_{30} S_{10}$ is equal to :
 - (1) 525
- (2) 515
- (3)510
- (4)505

Ans. Official answer NTA(2)

Sol.

Question ID: 656445470

- 6. Let $f:(0,\infty) \to R$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2f'(x) = 2xf(x) + 3$, with f(1) = 4. Then 2f(2) is equal to:
 - (1)23
- (2)29
- (3) 19
- (4)39

Ans. Official answer NTA (4)

Sol.

Question ID: 656445458

- 7. Let $A = [a_{ij}]$ be a square matrix of order 2 with entries either 0 or 1. Let E be the event that A is an invertible matrix. Then the probability P(E) is:
 - $(1)\frac{1}{8}$
- (2) $\frac{5}{8}$
- $(3) \frac{3}{16}$
- $(4) \frac{3}{8}$

Ans. Official answer NTA (4)

Sol.

Question ID: 656445461

- 8. Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides x + y = 11, x + 2y = 16 and 2x + 3y = 29. Then the product of the smallest and the largest values of α is equal to ::
 - (1)22
- (2)44
- (3)33
- (4)55

Ans. Official answer NTA(3)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 24 January Shift-2

Question ID: 656445454

For some a, b, let $f(x) = \begin{vmatrix} a + \frac{\sin x}{x} & 1 & b \\ a & 1 + \frac{\sin x}{x} & b \\ a & 1 & b + \frac{\sin x}{x} \end{vmatrix}$, $x \neq 0$, $\lim_{x \to 0} f(x) = \lambda + \mu a + \nu b$. Then 9.

 $(\lambda + \mu + v^2)$ is equal to:

- (1)9
- (2)36
- (3) 16
- (4)25

Official answer NTA(3) Ans.

Sol.

Question ID: 656445466

Let the position vectors of three vertices of a triangle be $4\vec{p} + \vec{q} - 3\vec{r}$, $-5\vec{p} + \vec{q} + 2\vec{r}$ and $2\vec{p} - \vec{q} + 2\vec{r}$. If the 10. position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\vec{p} + \vec{q} + \vec{r}}{4}$ and $\alpha \vec{p} + \beta \vec{q} + \gamma \vec{r}$ respectively, then $\alpha + 2\beta + 5\gamma$ is equal to :

- (1)6

- (3) 1
- (4)4

Ans.

Official answer NTA(2) Ans.

Question ID: 656445464

If $\alpha > \beta > \gamma > 0$, then the expression $\cot^{-1}\left\{\beta + \frac{\left(1 + \beta^2\right)}{(\alpha - \beta)}\right\} + \cot^{-1}\left\{\gamma + \frac{\left(1 + \gamma^2\right)}{(\beta - \gamma)}\right\} + \cot^{-1}\left\{\alpha + \frac{\left(1 + \alpha^2\right)}{(\gamma - \alpha)}\right\}$ is 11. equal to:

- (1)0
- (2) π
- $(3) \frac{\pi}{2} (\alpha + \beta + \gamma) \qquad (4) 3\pi$

Official answer NTA (2) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 24 January Shift-2

Question ID: 656445465

12. Let $\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$, $\vec{b} = \vec{a} \times (\hat{i} - 2\hat{k})$ and $\vec{c} = \vec{b} \times \hat{k}$. Then the projection of $\vec{c} - 2\hat{j}$ on \vec{a} is:

- $(1) \sqrt{14}$
- (2) $2\sqrt{7}$
- (3) $2\sqrt{14}$
- (4) $3\sqrt{7}$

Ans. Official answer NTA(3)

Sol.

Question ID: 656445469

13. The area of the region enclosed by the curves $y = e^x$, $y = |e^x - 1|$ and y-axis is :

- $(1)\log_{e}2$
- $(2) 1 + \log_{2} 2$
- $(3) 1 \log_{2} 2$
- $(4) 2\log_{e} 2 1$

Ans. Official answer NTA(3)

Sol.

Question ID: 656445455

14. If the system of equations x + 2y - 3z = 2

$$2x + \lambda y + 5z = 5$$

 $14x + 3y + \mu z = 33$

has infinitely many solutions, then $\lambda + \mu$ is equal to : :

- (1) 13
- (2) 12
- (3) 10
- (4)11

Ans. Official answer NTA(2)

Sol.

Question ID: 656445459

15. Suppose A and B are the coefficients of 30^{th} and 12^{th} terms respectively in the binomial expansion of $(1+x)^{2n-1}$. If 2A = 5B, then n is equal to:

- (1)21
- (2)20
- (3) 19
- (4)22

Ans. Official answer NTA(1)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 24 January Shift-2

Question ID: 656445463

The equation of the chord, of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid-point is (3, 1) is: 16.

$$(1) 48x + 25y = 169$$

(1)
$$48x + 25y = 169$$
 (2) $25x + 101y = 176$ (3) $5x + 16y = 31$ (4) $4x + 122y = 134$

$$(4) 4x + 122y = 134$$

Official answer NTA(1) Ans.

Sol.

Question ID: 656445460

- 17. Group A consists of 7 boys and 3 girls, while group B consists of 6 boys and 5 girls. The number of ways, 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group A and the remaining 3 from group B, is equal to:
 - (1)8925
- (2)8750
- (3)8575
- (4)9100

Official answer NTA(1) Ans.

Sol.

Question ID: 656445462

If the equation of the parabola with vertex $V\left(\frac{3}{2},3\right)$ and the directrix x + 2y = 0 is $\alpha x^2 + \beta y^2 - \gamma xy - 30x -$ 18.

60y + 225 = 0, then $\alpha + \beta + \gamma$ is equal to :

- (1) 6

- (3)9
- (4) 8

Official answer NTA(3) Ans.

Sol.

Question ID: 656445451

- The function $f:(-\infty,\infty) \to (-\infty,1)$, defined by $f(x) = \frac{2^x 2^{-x}}{2^x + 2^{-x}}$ is: 19.
 - (1) Both one-one and onto

(2) Neither one-one nor onto

(3) One-one but not onto

(4) Onto but not one-one

Official answer NTA(3) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 24 January Shift-2

Question ID: 656445468

- 20. Let (2, 3) be the largest open interval in which the function $f(x) = 2\log_e(x-2) x^2 + ax + 1$ is strictly increasing and (b, c) be the largest open interval, in which the function $g(x) = (x-1)^3(x+2-a)^2$ is strictly decreasing. Then 100(a+b-c) is equal to:
 - (1)420
- (2)280
- (3)360
- (4) 160

Ans. Official answer NTA(3)

Sol.

SECTION - B

Question ID: 656445473

21. If
$$\int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} dx = x\sqrt{x^2 + x + 1} + \alpha\sqrt{x^2 + x + 1} + \beta\log_e \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C$$
, where C is the

constant of integration, then $\alpha + 2\beta$ is equal to _____.

Ans. Official answer NTA(16)

Sol.

Question ID: 656445472

22. Let P be the image of the point Q(7, -2, 5) in the line L: $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ and R(5, p, q) be a point on L, Then the square of the area of $\triangle PQR$ is _____.

Ans. Official answer NTA (957)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 24 January Shift-2

Question ID: 656445475

23. Let $H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2: -\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ be two hyperbolas having length of latus rectums $15\sqrt{2}$ and $12\sqrt{5}$ respectively. Let their ecentricities be $e_1 = \sqrt{\frac{5}{2}}$ and e_2 respectively. If the product of the lengths of their transverse axes is $100\sqrt{10}$, then $25e_2^2$ is equal to ______.

Ans. Official answer NTA(55)

Sol.

Question ID: 656445474

24. Let y = y(x) be the solution of the differential equation $2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x$, $x \in \left(0, \frac{\pi}{2}\right)$. If $y\left(\frac{\pi}{3}\right) = 0$, then $y'\left(\frac{\pi}{4}\right) + y\left(\frac{\pi}{4}\right)$ is equal to _____.

Ans. Official answer NTA(1)

Sol.

Question ID: 656445471

Number of functions $f: \{1, 2, ..., 100\} \rightarrow \{0, 1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to _____.

Ans. Official answer NTA (392)

Sol.