JEE Main January 2025 Question Paper With Text Solution 23 January | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-2

JEE MAIN JANUARY 2025 | 23TH JANUARY SHIFT-2

SECTION - A

Question ID: 656445376

1.	Let $A = \{(x, y) \in R \times R : x + y \ge 3\}$ and $B = \{(x, y) \in R \times R : x + y \le 3\}$. If $C = \{(x, y) \in A \cap B : x = 0\}$
	or y = 0}, then $\sum_{(x,y)\in C} x+y $ is:

- (1) 15
- (2) 18
- (3) 12
- (4)24

Official answer NTA(3) Ans.

Sol.

Question ID: 656445394

Let x = x(y) be the solution of the differential equation $y = \left(x - y \frac{dx}{dy}\right) \sin\left(\frac{x}{y}\right)$, y > 0 and $x(1) = \frac{\pi}{2}$. Then 2. $\cos(x(2))$ is equal to:

- $(1) 2(\log_{2} 2)^{2} 1$
- $(2) 2(\log_{a} 2) 1$
- (3) $1 2(\log_{e} 2)$ (4) $1 2(\log_{e} 2)^{2}$

Official answer NTA(1) Ans.

Sol.

Question ID: 656445390

- 3. A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 cm³/min and the thickness of the ice-cream layer decreases at the rate of $\frac{1}{4\pi}$ cm / min . The surface area (in cm²) of the chocolate ball (without the ice-cream layer) is:
 - (1) 196π
- $(2) 225\pi$
- (3) 128π
- (4) 256π

Official answer NTA (4) Ans.

Sol.

Question ID: 656445391

If the area of the region $\{(x, y): -1 \le x \le 1, 0 \le y \le a + e^{|x|} - e^{-x}, a > 0\}$ is $\frac{e^2 + 8e + 1}{e}$, then the value of a is 4.

- (1)7
- (2) 8
- (3)5
- (4)6

Official answer NTA(3) Ans.

Sol.

Question ID: 656445384

The length of the chord of the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is: 5.

- $(1) \frac{5}{3} \sqrt{15}$
- (2) $\frac{1}{3}\sqrt{15}$

Official answer NTA(3) Ans.

Sol.

Question ID: 656445378

The number of complex numbers z, satisfying |z| = 1 and $\left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1$, is: 6.

- (1)6
- (2)4

- (3) 10
- (4) 8

Official answer NTA (4) Ans.

Sol.

Question ID: 656445393

If $I = \int_0^{\frac{\pi}{2}} \frac{\sin^{\frac{3}{2}} x}{\sin^{\frac{3}{2}} x + \cos^{\frac{3}{2}} x} dx$, then $\int_0^{21} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$ equals:

- $(1) \frac{\pi^2}{12}$
- (2) $\frac{\pi^2}{4}$ (3) $\frac{\pi^2}{16}$
- $(4) \frac{\pi^2}{8}$

Official answer NTA(3) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-2

Question ID: 656445386

8. Let the range of the function $f(x) = 6 + 16\cos x \cdot \cos\left(\frac{\pi}{3} - x\right) \cdot \cos\left(\frac{\pi}{3} + x\right) \cdot \sin 3x \cdot \cos 6x$, $x \in R$ be $[\alpha, \beta]$.

Then the distance of the point (α, β) from the line 3x + 4y + 12 = 0 is:

- (1)8
- (2)11
- (3)9
- (4) 10

Ans. Official answer NTA(2)

Sol.

Question ID: 656445388

9. If the square of the shortest distance between the lines $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+3}{-3}$ and $\frac{x+1}{2} = \frac{y+3}{4} = \frac{z+5}{-5}$ is $\frac{m}{n}$, where m, n are coprime numbers, then m+n is equal to:

- (1)6
- (2) 14
- (3)9
- (4)21

Ans. Official answer NTA(3)

Sol.

Question ID: 656445383

10. A rod of length eight units moves such that its ends A and B always lie on the lines x - y + 2 = 0 and y + 2 = 0, respectively. If the locus of the point P, that divides the rod AB internally in the ratio 2:1 is $9(x^2 + \alpha y^2 + \beta xy + \gamma x + 28y) - 76 = 0$, then $\alpha - \beta - \gamma$ is equal to:

- (1)22
- (2)24
- (3)21
- (4)23

Ans. Official answer NTA (4)

Sol.

Question ID: 656445389

11. $\lim_{x \to \infty} \frac{(2x^2 - 3x + 5)(3x - 1)^{\frac{x}{2}}}{(3x^2 + 5x + 4)\sqrt{(3x + 2)^x}}$ is equal to:

- $(1) \frac{2}{3\sqrt{e}}$
- (2) $\frac{2e}{3}$
- (3) $\frac{2}{\sqrt{3e}}$
- (4) $\frac{2e}{\sqrt{3}}$

Ans. Official answer NTA(1)

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-2

Sol.

Question ID: 656445380

12. Let
$$A = [a_{ij}]$$
 be a 3×3 matrix such that $A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $A \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, then a_{23} equals:

- (1)2
- (2)0
- (3)1
- (4) -1

Official answer NTA (4) Ans.

Sol.

Question ID: 656445377

Let $X = R \times R$. Define a relation R on X as : 13.

$$(a_1, b_1) R(a_2, b_2) \Leftrightarrow b_1 = b_2$$
.

Statement I: R is an equivalence relation.

Statement II: For some $(a, b) \in X$, the set $S = \{(x, y) \in X : (x, y) R (a, b)\}$ represents a line parallel to y = x.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

Official answer NTA(1) Ans.

Sol.

Question ID: 656445379

14. The system of equations

$$x + y + z = 6,$$

$$x + 2y + 5z = 9$$
,

$$x + 5y + \lambda z = \mu$$
,

has no solution if:

(1)
$$\lambda = 17, \mu \neq 18$$

(2)
$$\lambda = 17$$
, $\mu = 18$

(3)
$$\lambda = 15 \text{ m} \neq 1$$

(2)
$$\lambda = 17$$
, $\mu = 18$ (3) $\lambda = 15$, $\mu \neq 17$ (4) $\lambda \neq 17$, $\mu \neq 18$

Official answer NTA(1) Ans.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-2

Sol.

Question ID: 656445382

15. A board has 16 squares as shown in the figure:

Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:

- $(1)\frac{4}{5}$
- (2) $\frac{3}{5}$
- (3) $\frac{23}{30}$
- $(4) \frac{7}{10}$

Ans. Official answer NTA(1)

Sol.

Question ID: 656445381

16. If in the expansion of $(1+x)^p (1-x)^q$, the coefficients of x and x^2 are 1 and -2, respectively, then p^2+q^2 is equal to :

- (1) 18
- (2) 8
- (3) 13
- (4)20

Ans. Official answer NTA(3)

Sol.

Question ID: 656445385

17. Let the shortest distance from (a, 0), a > 0, to the parabola $y^2 = 4x$ be 4. Then the equation of the circle passing through the point (a, 0) and the focus of the parabola, and having its centre on the axis of the parabola is:

$$(1) x^2 + y^2 - 10x + 9 = 0$$

(2)
$$x^2 + y^2 - 8x + 7 = 0$$

$$(3) x^2 + y^2 - 6x + 5 = 0$$

$$(4) x^2 + y^2 - 4x + 3 = 0$$

Ans. Official answer NTA(3)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-2

Question ID: 656445387

18. The distance of the line $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$ from the point (1, 4, 0) along the line $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3}$ is:

- $(1) \sqrt{13}$
- (2) $\sqrt{17}$
- (3) $\sqrt{14}$
- $(4) \sqrt{15}$

Ans. Official answer NTA (3)

Sol.

Question ID: 656445392

19. Let $\int x^3 \sin x dx = g(x) + C$, where C is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha\pi^3 + \beta\pi^2 + \gamma$, $\alpha, \beta, \gamma \in \mathbb{Z}$, then $\alpha + \beta - \gamma$ equals :

- (1) 48
- (2) 55
- (3) 62
- (4)47

Ans. Official answer NTA(2)

Sol.

Question ID: 656445395

20. Let the point A divide the line segment joining the points P(-1, -1, 2) and Q(5, 5, 10) internally in the ratio r: 1(r > 0). If O is the origin and $\left(\overrightarrow{OQ} \cdot \overrightarrow{OA}\right) - \frac{1}{5} \left| \overrightarrow{OP} \times \overrightarrow{OA} \right|^2 = 10$, then the value of r is:

- (1) 3
- (2)7

- $(3) \sqrt{7}$
- (4) 14

Ans. Official answer NTA(2)

Sol.

SECTION - B

Question ID: 656445396

The roots of the quadratic equation $3x^2 - px + q = 0$ are 10^{th} and 11^{th} terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88, then q - 2p is equal to _____.

Ans. Official answer NTA (474)

MATRIX JEE ACADEMY

Official answer NTA (8788)

Ans. Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-2

Sol.

Questi	on ID: 656445400
22.	The focus of the parabola $y^2 = 4x + 16$ is the centre of the circle C of radius 5. If the values of λ , for which C passes through the point of intersection of the lines $3x - y = 0$ and $x + \lambda y = 4$, are λ_1 and λ_2 , $\lambda_1 < \lambda_2$, then $12 \lambda_1 + 29\lambda_2$ is equal to
Ans.	Official answer NTA(15)
Sol.	
Questi	on ID: 656445397
23.	Let α , β be the roots of the equation $x^2 - ax - b = 0$ with $Im(\alpha) < Im(\beta)$. Let $P_n = \alpha^n - \beta^n$. If
	$P_3 = -5\sqrt{7}i$, $P_4 = -3\sqrt{7}i$, $P_5 = 11\sqrt{7}i$ and $P_6 = 45\sqrt{7}i$, then $ \alpha^4 + \beta^4 $ is equal to
Ans.	Official answer NTA(31)
Sol.	
Questi	on ID: 656445398
24.	The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is
Ans.	Official answer NTA (17280)
Sol.	
Questi	on ID: 656445399
25.	The variance of the numbers 8, 21, 34, 47,, 320 is

MATRIX JEE ACADEMY