JEE Main January 2025 Question Paper With Text Solution 23 January | Shift-1

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN JANUARY 2025 | 23TH JANUARY SHIFT-1

SECTION - A

Question ID: 736475978

- 1. Let $\left| \frac{\overline{z} i}{2\overline{z} + i} \right| = \frac{1}{3}$, $z \in C$, be the equation of a circle with center at C. If the area of the triangle, whose vertices are at the points (0,0), C and $(\alpha,0)$ is 11 square units, then α^2 equals
 - (1) 50
- (2) $\frac{121}{25}$
- (3) 100
- $(4) \frac{81}{25}$

Ans. Official answer NTA(3)

Sol.

Question ID: 736475986

- 2. The value of $(\sin 70^\circ)$ (cot $10^\circ \cot 70^\circ 1$) is:
 - (1) 2/3
- (2) 3/2
- (3)1
- (4)0

Ans. Official answer NTA(3)

Sol.

Question ID: 736475979

3. If the system of equations

$$(\lambda - 1)x + (\lambda - 4)y + \lambda z = 5$$

$$\lambda x + (\lambda - 1)y + (\lambda - 4)z = 7$$

$$(\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9$$

has infinitely many solutions, then $\lambda^2 + \lambda$ is equal to :

- (1)6
- (2) 12
- (3) 10
- (4)20

Ans. Official answer NTA(2)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-1

Question ID: 736475990

Let P be the foot of the perpendicular from the point Q(10,-3,-1) on the line $\frac{x-3}{7} = \frac{y-2}{1} = \frac{z+1}{2}$ Then the 4. area of the right angled triangle PQR, where R is the point (3,-2,1), is:

- $(1) \ 3\sqrt{30}$
- (2) $\sqrt{30}$
- $(3) 9\sqrt{15}$
- $(4) 8\sqrt{15}$

Official answer NTA(1) Ans.

Sol.

Ouestion ID: 736475989

Let the position vectors of the vertices A, B and C of a tetrahedron ABCD be $\hat{i} + 2\hat{j} + \hat{k}$, $\hat{i} + 3\hat{j} - 2\hat{k}$ and 5. $2\hat{i} + \hat{j} - \hat{k}$ respectively. The altitude from the vertex D to the opposite face ABC meets the median line segment through A of the triangle ABC at the point E. If the length of AD is $\frac{\sqrt{110}}{3}$ and the volume of the tetrahedron is $\frac{\sqrt{805}}{6\sqrt{2}}$, then the position vector of E is:

$$(1) \ \frac{1}{6} \Big(12 \hat{\mathbf{i}} + 12 \hat{\mathbf{j}} + \hat{\mathbf{k}} \Big) \quad (2) \ \frac{1}{2} \Big(\hat{\mathbf{i}} + 4 \hat{\mathbf{j}} + 7 \hat{\mathbf{k}} \Big) \qquad (3) \ \frac{1}{6} \Big(7 \hat{\mathbf{i}} + 12 \hat{\mathbf{j}} + \hat{\mathbf{k}} \Big) \qquad (4) \ \frac{1}{12} \Big(7 \hat{\mathbf{i}} + 4 \hat{\mathbf{j}} + 3 \hat{\mathbf{k}} \Big)$$

(3)
$$\frac{1}{6} \left(7\hat{i} + 12\hat{j} + \hat{k} \right)$$
 (4) $\frac{1}{6}$

$$(4) \frac{1}{12} \left(7\hat{i} + 4\hat{j} + 3\hat{k} \right)$$

Official answer NTA(3) Ans.

Sol.

Question ID: 736475980

If A, B, and $(adj(A^{-1}) + adj(B^{-1}))$ are non-singular matrices of same order, then the inverse of A $(adj(A^{-1}) +$ 6. $adi(B^{-1}))^{-1}B$, is equal to:

$$(1) adj(B^{-1}) + adj(A^{-1})$$

(2)
$$\frac{AB^{-1}}{|A|} + \frac{BA^{-1}}{|B|}$$

(3)
$$AB^{-1} + A^{-1}B$$

$$(4) \frac{1}{|AB|} (adj(B) + adj(A))$$

Ans. Official answer NTA (4)

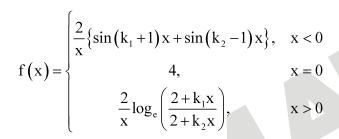
Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-1

Question ID: 736475977


- 7. Let R = (1,2), (2,3), (3,3) be a relation defined on the set $\{1,2,3,4\}$. Then the minimum number of elements, needed to be added in R so that R becomes an equivalence relation, is:
 - (1) 10
- (2)7
- (3)9
- (4)8

Ans. Official answer NTA(2)

Sol.

Question ID: 736475991

8. If the function

is continuous at x=0, then $k_1^2 + k_2^2$ is equal to :

- (1)20
- (2) 10
- (3) 8
- (4)5

Ans. Official answer NTA(2)

Sol.

Question ID: 736475994

- 9. The value of $\int_{e^2}^{e^4} \frac{1}{x} \left(\frac{e^{\left((\log_e x)^2 + 1\right)^{-1}}}{e^{\left((\log_e x)^2 + 1\right)^{-1}} + e^{\left((6 \log_e x)^2 + 1\right)^{-1}}} \right) dx$ is:
 - (1)2
- $(2) \log_{2} 2$
- $(3) e^{2}$
- (4) 1

Ans. Official answer NTA (4)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-1

Question ID: 736475992

10. Marks obtain by all the students of class 12 are presented in a frequency distribution with classes of equal width. Let the median of this grouped data be 14 with median class interval 12-18 and median class frequency 12. If the number of students whose marks are less than 12 is 18, then the total number of students is:

(1)52

(2)44

(3)40

(4)48

Ans.

Official answer NTA(2) Ans.

Question ID: 736475982

The number of words, which can be formed using all the letters of the word "DAUGHTER", so that all the 11. vowels never come together, is:

(1)37000

(2)36000

(3)34000

(4)35000

Ans. Official answer NTA(2)

Sol.

Ouestion ID: 736475988

Let the arc AC of a circle subtend a right angle at the centre O. If the point B on the arc AC, divides the arc AC 12.

such that
$$\frac{\text{length of arc AB}}{\text{length of arc BC}} = \frac{1}{5}$$
, and $\overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}$, then $\alpha + \sqrt{2}(\sqrt{3} - 1)\beta$ is equal to :

(1) $2+\sqrt{3}$

(2) $2 - \sqrt{3}$ (3) $5\sqrt{3}$

(4) $2\sqrt{3}$

Official answer NTA(2) Ans.

Sol.

Ouestion ID: 736475983

One die has two faces marked 1, two faces marked 2, one face marked 3 and one face marked 4. Another 13. die has one face marked 1, two faces marked 2, two faces marked 3 and one face marked 4. The probability of getting the sum of numbers to be 4 or 5, when both the dice are thrown together, is:

 $(1) \frac{4}{9}$

 $(3)\frac{1}{2}$

 $(4) \frac{3}{5}$

Official answer NTA(3) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-1

Question ID: 736475981

14. If the first term of an A.P. is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to:

(1) - 1080

(2)-1200

(3)-120

(4) - 1020

Ans. Official answer NTA(1)

Sol.

Question ID: 736475984

15. Let the area of a $\triangle PQR$ with vertices P(5,4), Q(-2,4) and R(a,b) be 35 square units. If its orthocenter and centroid are $O\left(2,\frac{14}{5}\right)$ and C(c,d) respectively, then c+2d is equal to :

(1) 2

(2) $\frac{8}{3}$

(3) $\frac{7}{3}$

(4) 3

Ans. Official answer NTA(4)

Sol.

Question ID: 736475995

16. Let a curve y = f(x) pass through the points (0,5) and ($\log_e 2$, k). If the curve satisfies the differential equation $2(3+y)e^{2x} dx - (7+e^{2x}) dy = 0$, then k is equal to:

(1) 16

(2) 8

(3)32

(4) 4

Ans. Official answer NTA(2)

Sol.

Question ID: 736475976

17. Let $f(x) = \log_e x$ and $g(x) = \frac{x^4 - 2x^3 + 3x^2 - 2x + 2}{2x^2 - 2x + 1}$. Then the domain of fog is:

(1)R

 $(2)[1,\infty)$

 $(3) [0, \infty)$

 $(4)(0,\infty)$

Ans. Official answer NTA(1)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-1

Question ID: 736475993

Let $I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $I(37) - I(24) = \frac{1}{4} \left(\frac{1}{h^{\frac{1}{13}}} - \frac{1}{c^{\frac{1}{13}}}\right)$, $b, c \in \mathbb{N}$, then 3(b+c) is equal to: 18.

- (1)40
- (2)39
- (3)26
- (4)22

Official answer NTA(2) Ans.

Sol.

Question ID: 736475985

If $\frac{\pi}{2} \le x \le \frac{3\pi}{4}$, then $\cos^{-1}\left(\frac{12}{13}\cos x + \frac{5}{13}\sin x\right)$ is equal to: 19.

- (1) $x \tan^{-1} \frac{5}{12}$ (2) $x + \tan^{-1} \frac{4}{5}$ (3) $x + \tan^{-1} \frac{5}{12}$ (4) $x \tan^{-1} \frac{4}{3}$

Official answer NTA(1) Ans.

Sol.

Question ID: 736475987

20. If the line 3x - 2y + 12 = 0 intersects the parabola $4y = 3x^2$ at the points A and B, then at the vertex of the parabola, the line segment AB subtends an angle equal to:

- (1) $\tan^{-1}\left(\frac{11}{9}\right)$ (2) $\tan^{-1}\left(\frac{4}{5}\right)$ (3) $\frac{\pi}{2} \tan^{-1}\left(\frac{3}{2}\right)$ (4) $\tan^{-1}\left(\frac{9}{7}\right)$

Official answer NTA (4) Ans.

Sol.

SECTION - B

Question ID: 736475997

If the area of the larger portion bounded between the curves $x^2 + y^2 = 25$ and y = |x - 1| is $\frac{1}{4}(b\pi + c)$, b, $c \in \mathbb{R}$ 21. N, then b + c is equal to \cdot

Official answer NTA (77) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 23 January Shift-1

Question ID: 7364751000

22. If the set of all values of a, for which the equation $5x^3 - 15x - a = 0$ has three distinct real roots, is the interval (α, β) , then $\beta - 2\alpha$ is equal to _____.

Ans. Official answer NTA (30)

Sol.

Question ID: 736475996

- 23. If the equation $a(b-c)x^2 + b(c-a)x + c(a-b) = 0$ has equal roots, where a + c = 15 and $b = \frac{36}{5}$, then $a^2 + c^2$ is equal to ______.
- **Ans.** Official answer NTA(117)

Sol.

Question ID: 736475998

- 24. The sum of all rational terms in the expansion of $\left(1+2^{\frac{1}{3}}+3^{\frac{1}{2}}\right)^6$ is equal to _____.
- Ans. Official answer NTA (612)

Sol.

Question ID: 736475999

25. Let the circle C touch the line x - y + 1 = 0, have the centre on the positive x-axis, and cut off a chord of length $\frac{4}{\sqrt{13}}$ along the line -3x + 2y = 1. Let H be the hyperbola $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$, whose one of the foci is the centre of

C and the length of the transverse axis is the diameter of C. Then $2\alpha^2 + 3\beta^2$ is equal to _____.

Ans. Official answer NTA (19)

Sol.

MATRIX JEE ACADEMY