JEE Main January 2025 Question Paper With Text Solution 22 January | Shift-1

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN JANUARY 2025 | 22TH JANUARY SHIFT-1

SECTION - A

Question ID: 65644595

1.	Let $x = x(y)$ be the solution of the differential equation $y^2 dx$	$+\left(x-\frac{1}{y}\right)dy$	= 0. If $x(1) = 1$, then $x = 0$	$\left(\frac{1}{2}\right)$) is:
----	--	---------------------------------	-----------------------------------	----------------------------	-------

- (1) 3 e
- $(2)\frac{1}{2} + e$
- $(3)\frac{3}{2} + e$
- (4) 3 + 6

Ans. Official answer NTA(1)

Sol.

Question ID: 65644577

- 2. The number of non-empty equivalence relations on the set $\{1,2,3\}$ is:
 - (1)7
- (2)6
- (3)4
- (4)5

Ans. Official answer NTA(4)

Sol.

Question ID: 65644582

- 3. From all the English alphabets, five letters are chosen and are arranged in alphabetical order. The total number of ways, in which the middle letter is 'M', is:
 - (1) 14950
- (2)5148
- (3)4356
- (4)6084

Ans. Official answer NTA(2)

Sol.

Question ID: 65644579

- 4. Let z_1 , z_2 and z_3 be three complex numbers on the circle |z|=1 with $\arg(z_1)=\frac{-\pi}{4}$, $\arg(z_2)=0$ and $\arg(z_3)=\frac{\pi}{4}$. If $|z_1\overline{z}_2+z_2\overline{z}_3+z_3\overline{z}_1|^2=\alpha+\beta\sqrt{2}$, $\alpha,\beta\in \mathbb{Z}$, then the value of $\alpha^2+\beta^2$ is:
 - (1)31
- (2)24
- (3)29
- (4)41

Ans. Official answer NTA(3)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 22 January Shift-1

Sol.

Question ID: 65644587

5. Let the parabola $y = x^2 + px - 3$, meet the coordinate axes at the points P, Q and R. If the circle C with centre at (-1, -1) passes through the points P, Q and R, then the area of Δ PQR is:

(1)4

(2)7

(3)6

(4)5

Ans. Official answer NTA(3)

Sol.

Question ID: 65644584

6. Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected ball is black, given that the second selected ball is also black, is

 $\frac{m}{n}$, where gcd(m, n)=1, then m + n is equal to:

(1)4

(2)14

(3) 13

(4)11

Ans. Official answer NTA(2)

Sol.

Question ID: 65644592

7. Let f(x) be a real differentiable function such that f(0) = 1 and f(x + y) = f(x) f'(y) + f'(x) f(y) for all $x, y \in R$.

Then $\sum_{n=1}^{100} log_e f(n)$ is equal to :

(1)2406

(2)5220

(3) 2525

(4)2384

Ans. Official answer NTA(3)

Sol.

Question ID: 65644589

8. Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16((\sec^{-1}x)^2 + (\csc^{-1}x)^2)$ is:

(1) $31\pi^2$

(2) $24\pi^2$

(3) $22\pi^2$

(4) $18\pi^2$

Ans. Official answer NTA(3)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 22 January Shift-1

Sol.

Question ID: 65644580

- 9. If $\sum_{r=1}^{n} T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}$, then $\lim_{n\to\infty} \sum_{r=1}^{n} \left(\frac{1}{T_r}\right)$ is equal to:
 - $(1)\frac{1}{3}$
- (2) 1
- (3) $\frac{2}{3}$
- (4) 0

Ans. Official answer NTA(3)

Sol.

Question ID: 65644594

- 10. The area of the region, inside the circle $(x 2\sqrt{3})^2 + y^2 = 12$ and outside the parabola $y^2 = 2\sqrt{3}x$ is:
 - $(1) 3\pi + 8$
- $(2) 6\pi 16$
- $(3) 3\pi 8$
- $(4) 6\pi 8$

Ans.

Ans. Official answer NTA(2)

Question ID: 65644576

- 11. Let $A = \{1, 2, 3, \dots, 10\}$ and $B = \left\{\frac{m}{n} : m, n \in A, m < n \text{ and } gcd(m, n) = 1\right\}$. Then n(B) is equal to :
 - (1)37
- (2)36
- (3)29
- (4)31

Ans. Official answer NTA (4)

Sol.

Question ID: 65644578

- 12. The product of all solutions of the equation $e^{5(\log_e x)^2 + 3} = x^8, x > 0$, is:
 - (1) $e^{\frac{6}{5}}$
- (2) $e^{\frac{8}{5}}$
- (3) e
- $(4) e^2$

Ans. Official answer NTA(2)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 22 January Shift-1

Question ID: 65644581

Let a_1 , a_2 , a_3 , be a G.P. of increasing positive terms. if $a_1a_2 = 28$ and $a_2 + a_4 = 29$, then a_6 is: 13.

(1)628

(2)526

(3)784

(4)812

Official answer NTA(3) Ans.

Sol.

Question ID: 65644585

14. Let the triangle PQR be the image of the triangle with vertices (1, 3), (3, 1) and (2, 4) in the line x + 2y = 2. If the centroid of $\triangle PQR$ is the point (α, β) , then $15(\alpha - \beta)$ is equal to :

(1)19

(2)21

(3)24

(4)22

Official answer NTA (4) Ans.

Sol.

Question ID: 65644586

A circle C of radius 2 lies in the second quadrant and touches both the coordinate axes. Let r be the radius of 15. a circle that has centre at the point (2, 5) and intersects the circle C at exactly two points. If the set of all possible values of r is the interval (α, β) , then $3\beta - 2\alpha$ is equal to :

(1) 10

(2) 15

(4) 12

Official answer NTA(2) Ans.

Sol.

Question ID: 65644590

Let $L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ be two lines. Then which of the following points 16.

lies on the line of the shortest distance between L_1 and L_2 :

$$(1)\left(-\frac{5}{3},-7,1\right)$$

$$(2)\left(\frac{8}{3},-1,\frac{1}{3}\right)$$

$$(3)\left(2,3,\frac{1}{3}\right)$$

$$(1)\left(-\frac{5}{3},-7,1\right) \qquad (2)\left(\frac{8}{3},-1,\frac{1}{3}\right) \qquad (3)\left(2,3,\frac{1}{3}\right) \qquad (4)\left(\frac{14}{3},-3,\frac{22}{3}\right)$$

Official answer NTA (4) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 22 January Shift-1

Question ID: 65644583

17. A coin is tossed three times. Let X denote the number of times a tail follows a head. If μ and σ^2 denote the mean and variance of X, then the value of $64(\mu + \sigma^2)$ is :

(1)64

(2)48

(3) 32

(4)51

Ans. Official answer NTA(2)

Sol.

Question ID: 65644591

18. Let $f: R \to R$ be a twice differentiable function such that f(x + y) = f(x) f(y) for all $x, y \in R$. If f'(0) = 4a and f satisfies f''(x) - 3af'(x) - f(x) = 0, a > 0, then the area of the region $R = \{(x, y) \mid 0 \le y \le f(ax), 0 \le x \le 2\}$ is:

 $(1) e^2 + 1$

 $(2) e^4 + 1$

 $(3) e^2 - 1$

 $(4) e^4 - 1$

Ans. Official answer NTA(3)

Sol.

Question ID: 65644593

19. Let for $f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x$, $I_1 = \int_0^{\pi/4} f(x) dx$ and $I_2 = \int_0^{\pi/4} x f(x) dx$. then $7I_1 + 12I_2$ is equal to:

(1)2

(2) 2π

 $(3) \pi$

(4) 1

Ans. Official answer NTA (4)

Sol.

Question ID: 65644588

20. Let the foci of a hyperbola be (1, 14) and (1, -12). If it passes through the point (1, 6), then the length of its latus-rectum is:

 $(1)\frac{288}{5}$

 $(2) \frac{144}{5}$

 $(3) \frac{24}{5}$

 $(4) \frac{25}{6}$

Ans. Official answer NTA(1)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 22 January Shift-1

SECTION - B

Question ID: 65644597

21. If
$$\sum_{r=0}^{5} \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{m}{n}$$
, $gcd(m, n) = 1$, then $m-n$ is equal to _____.

Ans. Official answer NTA (2035)

Sol.

Question ID: 65644599

22. Let $L_1: \frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0}$ and $L_2: \frac{x-2}{2} = \frac{y}{0} = \frac{z+4}{\alpha}$, $a \in R$ be two lines, which intersect at the point B.

If P is the foot of perpendicular from the point A(1, 1, -1) on L_2 , then the value of $26 \alpha (PB)^2$ is _____.

Ans. Official answer NTA (216)

Sol.

Question ID: 656445100

23. Let the function,

$$f(x) = \begin{cases} -3ax^2 - 2, & x < 1 \\ a^2 + bx, & x \ge 1 \end{cases}$$

be differentiable for all $x \in R$, where a > 1, $b \in R$. If the area of the region enclosed by y = f(x) and the line y = -20 is $\alpha + \beta \sqrt{3}$, $\alpha, \beta \in Z$, then the value of $\alpha + \beta$ is _____.

Ans. Official answer NTA (34)

Sol.

Question ID: 65644596

24. Let A be a square matrix of order 3 such that det(A) = -2 and $det(3adj(-6adj(3A))) = 2^{m+n} \cdot 3^{mn}$, m>n. Then 4m + 2n is equal to _____.

Ans. Official answer NTA (34)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2025 | 22 January Shift-1

Question ID: 65644598

25. Let \vec{c} be the projection vector $\vec{b} = \lambda \hat{i} + 4\hat{k}$, $\lambda > 0$, on the vector $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$. If $|\vec{a} + \vec{c}| = 7$, then the area of the parallelogram formed by the vectors \vec{b} and \vec{a} is _____.

Ans. Official answer NTA(16)

Sol.

MATRIX JEE ACADEMY