JEE Main September 2020 Question Paper With Text Solution 5 September | Shift-1

MATHEMATICS

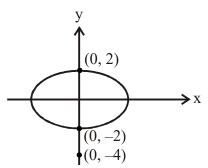
JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

Question Paper With Text Solution (Mathematics) MATRIX

JEE Main September 2020 | 5 Sep Shift-1

JEE MAIN SEP 2020 | 5 SEP SHIFT-1

- If the point P on the curve, $4x^2 + 5y^2 = 20$ is farthest from the point Q(0, -4), then PQ² is equal to : 1.
 - (4) 29 (1)36(2)21(3) 48
- (1)Ans.
- The longest distance of point Q from the curve will be along the normal. Sol.



Equation of normal is

$$\frac{\sqrt{5x}}{\cos\theta} - \frac{2y}{\sin\theta} = 5 - 4 = 1$$

 $\Rightarrow \sqrt{5}x\sin\theta - 2y\cos\theta = \sin\theta\cos\theta$

passes through (0, -4)

 $\Rightarrow 0 - 2 \times (-4) \cos \theta = \sin \theta \cos \theta$

 $\Rightarrow \cos \theta = 0$ or $\sin \theta = 8$ (Not possible)

So the normal will be x = 0.

The farthest point P will be (0, 2).

 $PQ_{max} = 6$ units $(PO)^2 = 36$

If S is the sum of the first 10 terms of the series : $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{21}\right) + \dots$, then 2.

tan(S) is equal to :

(1)
$$\frac{5}{6}$$
 (2) $\frac{10}{11}$ (3) $-\frac{6}{5}$ (4) $\frac{5}{11}$

(1)Ans.

Sol.
$$Sum = \sum_{n=1}^{6} \tan^{-1} \frac{1}{1+n(n+1)} = \sum_{n=1}^{6} \tan^{-1} \frac{(n+1)-(n)}{1+n(n+1)}$$
$$= \sum_{n=1}^{16} [\tan^{-1} (n+1) - \tan^{-1} (n)]$$
$$= (\tan^{-1} 2 - \tan^{-1} 1) + (\tan^{-1} 3 - \tan^{-1} 2) + \dots (\tan^{-1} 11 - \tan^{-1} 10)$$
$$= \tan^{-1} 11 - \tan^{-1} 1$$
$$= \tan^{-1} (\frac{11-1}{11+1})$$
$$S = \tan^{-1} \frac{5}{6}$$
$$\Rightarrow \tan S = \frac{5}{6}$$

3. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{1+e^{\pi x}}$ is :
(1) $\frac{\pi}{2}$ (2) $\frac{\pi}{4}$ (3) $\frac{3\pi}{2}$ (4) π
Ans. (1)
Sol. I = $\int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\pi x}} dx$ (1)
Using I(a + b - x) = I(x);
$$I = \int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\pi x}} = \int_{-\pi/2}^{\pi/2} \frac{e^{\pi nx}}{1+e^{\pi nx}} dx$$
(2)
(1) + (2)
 $\Rightarrow 21 = \int_{-\pi/2}^{\pi/2} \frac{1}{1+e^{\pi nx}} dx$

$$\Rightarrow$$
 I = $\frac{\pi}{2}$

- 4. The negation of the Boolean expression $x \leftrightarrow y$ is equivalent to :
 - (1) $(x \land \neg y) \lor (\neg x \land y)$ (2) $(\neg x \land y) \lor (\neg x \land \neg y)$ (3) $(x \land y) \land (\neg x \lor \neg y)$ (4) $(x \land y) \lor (\neg x \land \neg y)$

Ans. (4)

- Sol. $x \leftrightarrow \neg y = (x \Rightarrow \neg y) \land (\neg y \Rightarrow x)$ $= (\neg x \lor \neg y) \land (\neg (\neg y) \lor x)$ $= (\neg x \lor \neg y) \land (y \lor x)$ Using De-Morgan's law Its negation will be $(x \land y) \lor (\neg x \land \neg y)$ 5. Let $\lambda \in \mathbb{R}$. The system of linear equations $2x_1 - 4x_2 + \lambda x_3 = 1$
 - $x_{1} 6x_{2} + x_{3} = 1$ $x_{1} - 6x_{2} + x_{3} = 2$ $\lambda x_{1} - 10x_{2} + 4x_{3} = 3$ is inconsistent for :

(1) every value of λ
(3) exctly one negative value of λ

 $\Delta = 0 \Longrightarrow \begin{vmatrix} 2 & -4 & \lambda \\ 1 & -6 & 1 \\ 2 & 10 & 4 \end{vmatrix} = 0$

(2) exactly two values of λ(4) exctly one positive value of λ

Ans.

(3)

Sol.

$$\Rightarrow \lambda = 3 \text{ or } -\frac{2}{3}$$

for
$$\lambda = 3$$
, $\Delta_1 = 0 = \Delta_2 = \Delta_3$

 \Rightarrow Infinite solutions

for
$$\lambda = -\frac{2}{3}$$

 $\Delta_1 \neq 0 \Longrightarrow$ Inconsistent

 \Rightarrow exactly one negative value of λ .

Question Paper With Text Solution (Mathematics) JEE Main September 2020 | 5 Sep Shift-1 If the volume of a parallelopiped, whose coterminus edges are given by the vectors $\vec{a} = \hat{i} + \hat{j} + n\hat{k}$, 6. $\vec{b} = 2\hat{i} + 4\hat{j} - n\hat{k}$ and $\vec{c} = \hat{i} + n\hat{j} + 3\hat{k}$ ($n \ge 0$), is 158 cu. units, then : (2) n = 9(3) $\vec{b} \cdot \vec{c} = 10$ (4) n = 7(1) $\vec{a} \cdot \vec{c} = 17$ (3) Ans. Volume of parallelopiped = $\begin{vmatrix} 1 & 1 & n \\ 2 & 4 & -n \\ 1 & n & 3 \end{vmatrix}$ = 158. Sol. $\Rightarrow |1(12+n^2) - 1(6+n) + n(2n-4)| = 158$ $\Rightarrow |3n^2 - 5n + 6| = 158$ $\Rightarrow 3n^2 - 5n + 6 = 158$ or -158 $\Rightarrow 3n^2 - 5n - 152 = 0$ or $3n^2 - 5n + 164 = 0$ The second equation has no real roots. $3n^2 - 24n + 19n - 152 = 0$ \Rightarrow 3n (n - 8) + 19 (n - 8) = 0 \Rightarrow (3n + 19) (n - 8) = 0 \Rightarrow n = 8 or $-\frac{19}{3}$ Since $n \ge 0$, so n = 8 $\vec{a} = \hat{i} + \hat{j} + 8\hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} - 8\hat{k}$ and $\vec{c} = \hat{i} + 8\hat{j} + 3\hat{k}$ So $\vec{b} \cdot \vec{c} = 10$

7. The mean and variance of 7 observations are 8 and 16, respectively. If five observations are 2, 4, 10, 12, 14, then the absolute difference of the remaining two observations is :

(1) 4 (2) 3 (3) 1 (4) 2

Ans. (4)

Sol. Let the remaining observations are x and y.

Mean =
$$\frac{2+4+10+12+14+x+y}{7} = 8$$

 $\Rightarrow 42 + x + y = 56 \Rightarrow x + y = 14$ (1)

$$Variance = \frac{\sum_{i=1}^{7} x_i^2}{7} - (\overline{x})^2 = 16$$

$$\Rightarrow \frac{2^2 + 4^2 + 10^2 + 12^2 + 14^2 + x^2 + y^2}{7} - (8)^2 = 16$$

$$\Rightarrow 460 + x^2 + y^2 = 560 \Rightarrow x^2 + y^2 = 100 \dots (2)$$

$$(1)^2 - 2 \Rightarrow 2xy = 196 - 100 = 96$$

$$\Rightarrow xy = 48 \dots (3)$$

From (1) and (3)

$$x + \frac{48}{x} = 14 \Rightarrow x^2 - 14x + 48 = 0$$

$$\Rightarrow x = 6 \text{ and } y = 8 \text{ or } x = 8 \text{ and } y = 6$$

$$\Rightarrow |x - y| = 2$$

- If α is the positive root of the equation, $p(x) = x^2 x 2 = 0$, then $\lim_{x \to \alpha^+} \frac{\sqrt{1 \cos(p(x))}}{x + \alpha 4}$ is equal to : 8.
 - (3) $\frac{1}{\sqrt{2}}$ (4) $\frac{3}{\sqrt{2}}$ (2) $\frac{3}{2}$ $(1)\frac{1}{2}$

Ans.

(4)

$$x^{2}-x-2=0$$

 $\Rightarrow (x-2)(x+1)=0$
 $\Rightarrow x=2 \text{ or } -1$

Out of which 2 is the positive root

$$\Rightarrow \alpha = 2$$

Limit L =
$$\lim_{x \to 2^+} \frac{\sqrt{1 - \cos(x - 2)(x + 1)}}{x - 2}$$

= $\lim_{x \to 2^+} \frac{\sqrt{2\sin^2\left(\frac{(x - 2)(x + 1)}{2}\right)}}{x - 2}$

$$= \lim_{x \to 2^{+}} \frac{\sqrt{2} \left| \sin \frac{(x-2)(x+1)}{2} \right|}{x-2}$$

For $x \rightarrow 2^+$; $x^2 - x - 2 \rightarrow 0^+$.

So Mod will open with a positive sign

So
$$L = \lim_{x \to 2^+} \frac{\sqrt{2} \sin \frac{(x-2)(x+1)}{2}}{(x-2)\frac{(x+1)}{2}} \times \frac{(x+1)}{2}$$

$$=\sqrt{2} \times \frac{2+1}{2} = \frac{3}{2}\sqrt{2} = \frac{3}{\sqrt{2}}$$

9. If the function

$$f(x) = \begin{cases} k_1(x-\pi)^2, x \le \pi \\ k_2 \cos x, \quad x > \pi \end{cases}$$
 is twice differentiable, then the ordered pair (k_1, k_2) is equal to :

(1) (1, 0) (2) (1, 1) (3)
$$\left(\frac{1}{2}, 1\right)$$
 (4) $\left(\frac{1}{2}, -1\right)$

(3) Ans.

Function must be continuous at $x = \pi$. Sol.

$$\Rightarrow f(\pi^{-}) = f(\pi^{+})$$

$$\Rightarrow -1 = -k_{2} \Rightarrow k_{2} = 1$$

$$f'(x) = \begin{cases} 2k_{1}(x-\pi) , & x \le \pi \\ -k_{2}\sin x = -\sin x , & x > \pi \end{cases}$$

For f'(x) to exist, $f'(\pi^{-}) = f'(\pi^{+}) = 0$

$$f''(x) = \begin{cases} 2k_1 , x \le \pi \\ -k_2 \cos x , x > \pi \end{cases}$$
$$f''(\pi^{-}) = f''(\pi^{+}) \Longrightarrow 2k_1 = k_2$$

$$\Rightarrow k_1 = \frac{1}{2}$$

10. If y(x) is the solution of the differential equation $\frac{5 + e^y}{2 + y} \cdot \frac{dy}{dx} + e^x = 0$ satisfying y (0) = 1, then a value of

- $y(\log_e 13)$ is :
- (1) 1 (2) -1 (3) 0 (4) 2

Ans. (2)

- Sol. $\int \frac{dy}{y+2} = -\int \frac{e^x}{e^x + 5} dx$ $= ln(y+2) = -ln(e^x + 5) + C$ $x = 0, y = 1 \Longrightarrow ln \ 3 = -ln \ 6 + C \Longrightarrow C = ln \ 18$ So $y+2 = \frac{18}{e^x + 5}$ y(ln13) = -1
- 11. A survey that 73% of the persons working in an office like coffee, whereas 65% like tea,. If x denotes the percentage of them, who like both coffee and tea, then x cannot be :
 - (1) 38 (2) 63 (3) 36 (4) 54

Ans. (3)

Sol. n(C) = 73%

n(T) = 65%

Maximum value of $n(T \cap C) = 65\%$ (when set T lies completely inside set C)

Maximum value of $n(T \cup C) = 100\%$

 $n(T \cap C)_{min} = n(C) + n(T) - n(C \cup T)$ = 73% + 65% - 100%

 $\Rightarrow 38 \le x \le 65$ So x cannot be 36.

So x cannot be 50.

12. If $\int (e^{2x} + 2e^x - e^{-x} - 1)e^{(e^x + e^{-x})} dx = g(x)e^{(e^x + e^{-x})} + c$, where c is a constant of integration, then g(0) is equal to: (1) 2 (2) e (3) e^2 (4) 1

Ans. (1)
Sol.
$$\int (e^{2x} + 2e^{x} - e^{-x} - 1)(e^{e^{x} + e^{-x}}) dx$$

$$= \int (e^{x} - e^{-x})e^{e^{x} + e^{-x}} dx + \int (e^{2x} - e^{x} - 1)e^{e^{x} + e^{-x}} dx = I_{1} + I_{2}$$
For I_{1} , $e^{x} + e^{-x} = t$; $(e^{x} - e^{-x}) dx = dt$
 $I_{1} = \int e^{t} dt = e^{t} + C = e^{e^{x} + e^{-x}} + C$
 $I_{2} = \int e^{x} (e^{x} - e^{-x} + 1)e^{e^{x} + e^{-x}} dx$
 $\int (e^{x} - e^{-x} + 1)e^{e^{x} + e^{-x}} dx$
Let $e^{x} + e^{-x} + x = u; (e^{x} - e^{-x} + 1) dx = du$
So, $I_{2} = \int e^{u} du = e^{u} + C = e^{e^{x} + e^{-x} + x} + C$
 $I = I_{1} + I_{2} = e^{e^{x} + e^{-x}} (e^{x} + 1) + C$
 $g(x) = e^{x} + 1$
 $g(0) = 2$

13. If the co-ordinates of two points A and B are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and P is any point on the conic, $9x^2 + 16y^2 = 144$, then PA + PB is equal to :

Ans. (4)

Sol. Eccentricity = $\sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4}$

AA

Foci
$$(\pm a e, 0) = \left(\pm 4 \times \frac{\sqrt{7}}{4}, 0\right) = (\sqrt{7}, 0) \text{ and } \left(-\sqrt{7}, 0\right)$$

So
$$PA + PB = 2a = 2 \times 4 = 8$$

14. If
$$3^{2\sin 2\alpha - 1}$$
, 14 and $3^{4-2\sin 2\alpha}$ are first 3 terms of an artihmetic progression, then 6^{th} term of the A.P. is :

Ans. (2)

Sol. Let $\sin 2\alpha = x$

$$\frac{3^{2x-1} + 3^{4-2x}}{2} = 14$$

Let $3^{2x} = y$
$$\frac{y}{3} + \frac{81}{y} = 28$$

$$\Rightarrow y^2 - 84y + 243 = 0$$

$$\Rightarrow y^2 - 81y - 3y + 243 = 0$$

$$\Rightarrow (y - 81) (y - 3) = 0$$

$$\Rightarrow y = 81 \text{ or } y = 3$$

$$\Rightarrow 3^{2x} = 81 \text{ or } 3^{2x} = 3$$

$$\Rightarrow 2x = 4 \text{ or } 2x = 1$$

$$\Rightarrow x = 2 \text{ or } x = \frac{1}{2}$$

$$\Rightarrow \sin 2\alpha = 2 \text{ (Not possible) or } \sin 2\alpha = \frac{1}{2}$$

First term $a = 3^{1-1} = 1$ Common difference d = 14 - 1 = 13 6^{th} term $= a + 5d = 1 + 5 \times 13 = 66$

- 15. If the four complex numbers $z, \overline{z}, \overline{z} 2 \operatorname{Re}(\overline{z})$ and $z 2\operatorname{Re}(z)$ represent the vertices of a square of side 4 units in the Argand plane, then |z| is equal to :
 - (1) $2\sqrt{2}$ (2) 2 (3) 4 (4) $4\sqrt{2}$
- Ans. (1)

Sol. Let
$$z = x + iy$$
, $\overline{z} = x - iy$
 $\overline{z} - 2 \operatorname{Re}(\overline{z}) = x - iy - 2x = -x - iy$
 $z - 2 \operatorname{Re}(z) = x + iy - 2x = -x + iy$
 $|z - \overline{z}| = |2y| = 4$
 $\Rightarrow y = \pm 2$

$$|z - (z - 2\operatorname{Re}(z))| = 4$$
$$\Rightarrow |2x| = 4 \Rightarrow x = \pm 2$$
$$|z| = \sqrt{x^2 + y^2} = \sqrt{4 + 4} = 2\sqrt{2}$$

16. If the minimum and the maximum values of the function $f:\left[\frac{\pi}{4},\frac{\pi}{2}\right] \to \mathbb{R}$, defined by

$$f(\theta) = \begin{vmatrix} -\sin^2 \theta & -1 - \sin^2 \theta & 1 \\ -\cos^2 \theta & -1 - \cos^2 \theta & 1 \\ 12 & 10 & -2 \end{vmatrix}$$
 are m and M respectively, then the ordered pair (m, M) is equal to :

(1) $(0, 2\sqrt{2})$ (2) (0, 4) (3) (-4, 4) (4) (-4, 0)

Ans. (4)

Sol.
$$C_2 \rightarrow C_2 - C_1 + C_3$$

$$f(\theta) = \begin{vmatrix} -\sin^2 \theta & 0 & 1 \\ -\cos^2 \theta & 0 & 1 \\ 12 & -4 & -2 \end{vmatrix} = 4\cos 2\theta$$

$$\theta \in \left\lfloor \frac{\pi}{4}, \frac{\pi}{2} \right\rfloor$$
$$\Rightarrow 4 \cos 2\theta \in [-4, 0]$$

- 17. The product of the roots of the equation $9x^2 18|x| + 5 = 0$, is :
 - (1) $\frac{25}{9}$ (2) $\frac{5}{27}$ (3) $\frac{5}{9}$ (4) $\frac{25}{81}$

Ans. (4)

- Sol. Let $|\mathbf{x}| = t$
 - $\Rightarrow 9t^2 18t + 5 = 0$ $\Rightarrow 9t^2 15t 3t + 5 = 0$ $\Rightarrow (3t 5) (3t 1) = 0$

$$\Rightarrow t = \frac{1}{3} \text{ or } \frac{5}{3} = |x|$$
$$\Rightarrow x = \pm \frac{1}{3} \text{ or } \pm \frac{5}{3}$$
$$Product = \left(\frac{1}{3}\right) \left(-\frac{1}{3}\right) \left(\frac{5}{3}\right) \left(-\frac{5}{3}\right) = \frac{25}{81}$$

- 18. If the common tangent to the parabolas, $y^2 = 4x$ and $x^2 = 4y$ also touches the circle, $x^2 + y^2 = c^2$, then c is equal to:
 - (1) $\frac{1}{2}$ (2) $\frac{1}{\sqrt{2}}$ (3) $\frac{1}{2\sqrt{2}}$ (4) $\frac{1}{4}$

Ans. (2)

Sol. Tangent to $y^2 = 4x$ will be

$$y = mx + \frac{a}{m} = mx + \frac{1}{m}$$

Tangent to $x^2 = 4y$ will be

 $y = mx - am^2 = mx - m^2$

Comparing constant term

$$\frac{1}{m} = -m^2 \Longrightarrow m = -1$$

Tangent: y = -x - 1

If this is tangent to $x^2 + y^2 = c^2$, distance of tangent from center will be equal to radius.

$$\Rightarrow$$
 c = $\frac{1}{\sqrt{2}}$

19. If (a, b, c) is the image of the point (1, 2, -3) in the line, $\frac{x+1}{2} = \frac{y-3}{-2} = \frac{z}{-1}$, then a + b + c is equal to :

- (1) 1 (2) 2 (3) -1 (4) 3
- Ans. (2)
- Sol. Let Q be the foot of perpendicular from P(1, 2, -3) on the line is Q(2k-1, -2k+3, -k).
 - $\overrightarrow{PQ}.\overrightarrow{b} = 0$

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

Image: Constraint of the line,
$$2x - y + 3 = 0$$
 is at a distance $\frac{1}{\sqrt{5}}$ and $\frac{2}{\sqrt{5}}$ from the lines $4x - 2y + \alpha = 0$ and $6x - 3y + \beta = 0$, respectively, then the sum of all possible values of α and β is ____.

Ans. 30

Sol. Distance between
$$2x - y + 3 = 0$$
 and $2x - y + \frac{\alpha}{2} = 0$ is

$$\left|\frac{\frac{\alpha}{2} - 3}{\sqrt{5}}\right| = \frac{1}{\sqrt{5}}$$

 $\Rightarrow \alpha - 6 = \pm 2$ $\Rightarrow \alpha = 4 \text{ or } 8.$

Distance between 2x - y + 1 = 0 and $2x - y + \frac{\beta}{3} = 0$ is

$$\left|\frac{\frac{\beta}{3}-3}{\sqrt{5}}\right| = \frac{2}{\sqrt{5}}$$

 $\Rightarrow \beta - 9 = \pm 6$

$$\Rightarrow \beta = 3 \text{ or } 15$$

Sum of all possible values of α and $\beta = 4 + 8 + 3 + 15 = 30$.

22. The number of words, with or without meaning, that can be formed by taking 4 letters at a time from the letters of the word 'SYLLABUS' such that two letters are distinct and two letters are alike, is _____.

Sol. A B L L S S O Y

2 alike can be chosen in ${}^{2}C_{1} = 2$ ways

Rest 2 different letters can be chosen in ${}^{5}C_{2} = 10$ ways

Permutations of 2 alike and 2 different letters $=\frac{4!}{2!}=12$ ways

Total number of ways = $2 \times 10 \times 12 = 240$

- 23. The natural number m, for which the coefficient of x in the binomial expansion of $\left(x^{m} + \frac{1}{x^{2}}\right)^{22}$ is 1540, is _____.
- Ans. 13
- Sol. General term $T_{r+1} = {}^{22}C_r (x^m)^{22-r} \cdot \left(\frac{1}{x^2}\right)^r$

$$=^{22} C_r x^{22m-mr-2r}$$

$$22m - mr - 2r = 1$$
(1)
and ${}^{22}C_r = 1540$

$$^{22}C_3 = \frac{22 \times 21 \times 20}{3 \times 2 \times 1} = 1540$$

So r = 3 or 19.
If r = 3, 22m - 3m - 6 = 1

$$\Rightarrow m = \frac{7}{19} \text{ (not an integer)}$$
If r = 19, 22m - 19m - 38 = 1

$$\Rightarrow m = 13$$

- 24. Four fair dice are thrown independently 27 times. Then the expected number of times, at least two dice show up a three or a five, is _____.
- Ans. 11
- Sol. P (at least two are 3 or 5) = 1 P(No 3 or 5) P(Exactly one 3 or 5)

$$= 1 - \left(\frac{4}{6}\right)^4 - {}^4C_1 \frac{2}{6} \left(\frac{4}{6}\right)^5$$
$$= 1 - \frac{16}{81} - \frac{32}{81} = \frac{11}{27}$$

In binomial distribution, n = 27, p = $\frac{11}{27}$, q = $\frac{16}{27}$

Expected value = np

$$=27 \times \frac{11}{27} = 11$$

- 25. Let $f(x) = x \cdot \left\lfloor \frac{x}{2} \right\rfloor$, for -10 < x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to .
- Ans. 8
- Sol. Possible points of discontinuity are (-8, -6, -4, -2, 0, 2, 4, 6, 8)

checking $f(a^{-}) = f(a) = f(a^{+})$, it is continuous at 0, discontinuous at rest.

Hence discontinuous at 8 points.