JEE Main January 2024 Question Paper With Text Solution 01 February | Shift-2

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN JANUARY 2024 | 01ST FEBRUARY SHIFT-2

SECTION - A

Question ID: 9561771230

- 1. If the mirror image of the point P(3, 4, 9) in the line $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-2}{1}$ is (α, β, γ) , then 14 $(\alpha + \beta + \gamma)$ is:
 - (1)108
- (2)132
- (3) 102
- (4)138

Ans. Official answer NTA(1)

Sol.

Question ID: 9561771221

2. Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3}x^{\frac{1}{3}} + \frac{1}{2x^{\frac{2}{3}}}\right)^{18}$.

Then $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ is:

- $(1)\frac{4}{9}$
- $(2)\frac{1}{0}$
- $(3)\frac{1}{4}$
- $(4) \frac{9}{4}$

Ans. Official answer NTA(4)

Sol.

Question ID: 9561771218

- 3. If z is a complex number such that $|z| \ge 1$, then the minimum value of $\left|z + \frac{1}{2}(3+4i)\right|$ is:
 - (1) 3
- (2) $\frac{5}{2}$
- (3) 2
- $(4) \frac{3}{2}$

Ans. Official answer NTA(4)

Sol. Bonus by Matrix

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 01 February Shift-2

Question ID: 9561771223

4. Let $f(x) = |2x^2 + 5|x|-3|$, $x \in R$. If m and n denote the number of points where f is not continuous and not differentiable respectively, then m + n is equal to:

(1)5

(2)0

(3)3

(4)2

Ans. Official answer NTA(3)

Sol.

Question ID: 9561771232

5. Consider a \triangle ABC where A(1, 3, 2), B(-2, 8, 0) and C(3, 6, 7). If the angle bisector of \angle BAC meets the line BC at D, then the length of the projection of the vector \overrightarrow{AD} on the vector \overrightarrow{AC} is:

(1) $\frac{37}{2\sqrt{38}}$

(2) $\sqrt{19}$

(3) $\frac{\sqrt{38}}{2}$

(4) $\frac{39}{2\sqrt{38}}$

Ans. Official answer NTA(1)

Sol.

Question ID: 9561771216

6. If the domain of the function $f(x) = \frac{\sqrt{x^2 - 25}}{\left(4 - x^2\right)} + \log_{10}\left(x^2 + 2x - 15\right)$ is $\left(-\infty, \alpha\right) \cup \left[\beta, \infty\right)$, then $\alpha^2 + \beta^3$ is equal to :

(1)175

(2) 140

(3)150

(4)125

Ans. Official answer NTA(3)

Sol.

Question ID: 9561771231

7. Let P and Q be the points on the line $\frac{x+3}{8} = \frac{y-4}{2} = \frac{z+1}{2}$ which are at a distance of 6 units from the point

R(1, 2, 3). If the centroid of the triangle PQR is (α, β, γ) , then $\alpha^2 + \beta^2 + \gamma^2$ is :

(1)36

(2)18

(3)24

(4)26

Ans. Official answer NTA(2)

Sol.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

MATRIX MATRIX

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 01 February Shift-2

Question ID: 9561771219

8. Let α and β be the roots of the equation $px^2 + qx - r = 0$, where $p \neq 0$. If p, q and r be the consecutive terms of a non constant G.P. and $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{3}{4}$ then the value of $(\alpha - \beta)^2$ is:

(1)9

(2)8

 $(3)\frac{80}{9}$

 $(4)\frac{20}{3}$

Ans. Official answer NTA(3)

Sol.

Question ID: 9561771227

9. Let α be a non-zero real number. Suppose $f: R \to R$ is a differentiable function such that f(0) = 2 and $\lim_{x \to -\infty} f(x) = 1$. If $f'(x) = \alpha f(x) + 3$, for all $x \in R$, then $f(-\log_e 2)$ is equal to :

(1)9

(2)5

(3)7

(4)3

Ans. Official answer NTA(1)

Sol. Bonus by Matrix

Question ID: 9561771234

10. Consider 10 observations x_1, x_2, \dots, x_{10} such that $\sum_{i=1}^{10} (x_i - \alpha) = 2$ and $\sum_{i=1}^{10} (x_i - \beta)^2 = 40$, where α , β are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. Then $\frac{\beta}{\alpha}$ is equal to:

 $(1)\frac{5}{2}$

(2) 2

(3) 1

 $(4)\frac{3}{2}$

Ans.

Ans. Official answer NTA(2)

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 01 February Shift-2

Question ID: 9561771229

11. Let the locus of the midpoints of the chords of the circle $x^2 + (y-1)^2 = 1$ drawn from the origin intersect the line x + y = 1 at P and Q. Then, the length of PQ is:

(1)
$$\sqrt{2}$$

(2)
$$\frac{1}{\sqrt{2}}$$

$$(3)\frac{1}{2}$$

(4) 1

Ans. Official answer NTA(2)

Sol.

Question ID: 9561771235

12. The number of solutions of the equation $4\sin^2 x - 4\cos^3 x + 9 - 4\cos x = 0$; $x \in [-2\pi, 2\pi]$ is:

(1)0

(2)3

(3)1

(4) 2

Ans. Official answer NTA(1)

Sol.

Question ID: 9561771233

13. Let Ajay will not appear in JEE exam with probability $p = \frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $q = \frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is:

$$(1) \frac{9}{35}$$

(2)
$$\frac{18}{35}$$

$$(3) \frac{3}{35}$$

$$(4) \frac{24}{35}$$

Ans. Official answer NTA(2)

Sol.

Question ID: 9561771224

 $14. \qquad \text{Let } f(x) = \begin{cases} x - 1, x \text{ is even,} \\ 2x, \quad x \text{ is odd,} \end{cases} \\ x \in N. \text{ If for some } a \in N, f\left(f\left(f\left(a\right)\right)\right) = 21, \text{ then } \lim_{x \to a^{-}} \left\{\frac{|x|^{3}}{a} - \left[\frac{x}{a}\right]\right\}, \text{ where } \left(\frac{1}{a}\right) = \frac{1}{a} = \frac{1}{a}$

[t] denotes the greatest integer less than or equal to t, is equal to :

(1)225

(2)144

(3) 121

(4) 169

Ans. Official answer NTA(2)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 01 February Shift-2

Question ID: 9561771226

The value of $\int_0^1 \! \left(2x^3-3x^2-x+1\right)^{\!\frac{1}{3}} dx \, \text{ is equal to :}$ 15.

- (1)1
- (2)2
- (3)0
- (4)-1

Official answer NTA(3) Ans.

Sol.

Question ID: 9561771228

Let P be a point on the ellipse $\frac{x^2}{Q} + \frac{y^2}{A} = 1$. Let the line passing through P and parallel to y-axis meet the circle 16. $x^2 + y^2 = 9$ at point Q such that P and Q are on the same side of the x-axis. Then, the eccentricity of the locus of the point R on PQ such that PR: RQ = 4:3 as P moves on the ellipse, is:

- $(1) \frac{13}{21}$
- $(2)\frac{11}{19}$
- $(4) \frac{\sqrt{13}}{7}$

Official answer NTA(4) Ans.

Sol.

Question ID: 9561771220

Let the system of equations x + 2y + 3z = 5, 2x + 3y + z = 9, $4x + 3y + \lambda z = \mu$ have infinite number of solutions. 17. Then $\lambda + 2\mu$ is equal to :

- (1) 15
- (2)28
- (3)22
- (4) 17

Ans. Official answer NTA(4)

Sol.

Question ID: 9561771217

18. Consider the relations R₁ and R₂ defined R₁b \Leftrightarrow a² + b² = 1 for all a, b \in R and

 $(a, b) R_{s}(c, d) \Leftrightarrow a + d = b + c \text{ for all } (a, b), (c, d) \in N \times N. \text{ Then } :$

- (1) R_1 and R_2 both are equivalence relations (2) Neither R_2 nor R_3 is an equivalence relation
- (3) Only R_2 is an equivalence relation
- (4) Only R₁ is an equivalence relation

Official answer NTA(3) Ans.

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 01 February Shift-2

Question ID: 9561771225

19. If $\int_0^{\frac{\pi}{3}} \cos^4 x \, dx = a\pi + b\sqrt{3}$, where a and b are rational numbers, then 9a + 8b is equal to :

- $(1)\frac{3}{2}$
- (2) 2
- (3) 1
- (4) 3

Ans. Official answer NTA(2)

Sol.

Question ID: 9561771222

20. Let S_n denote the sum of the first n terms of an arithmetic progression. If $S_{10} = 390$ and the ratio of the tenth and the fifth terms is 15: 7, then $S_{15} - S_5$ is equal to:

- (1)690
- (2)890
- (3)790
- (4)800

Ans. Official answer NTA(3)

Sol.

SECTION - B

Question ID: 9561771240

21. If
$$y = \frac{(\sqrt{x} + 1)(x^2 - \sqrt{x})}{x\sqrt{x} + x + \sqrt{x}} + \frac{1}{15}(3\cos^2 x - 5)\cos^3 x$$
, then 96 y' $\left(\frac{\pi}{6}\right)$ is equal to ______.

Ans. Official answer NTA (105)

Sol.

Question ID: 9561771245

22. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = -\hat{i} - 8\hat{j} + 2\hat{k}$ and $\vec{c} = 4\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three vectors such that $\vec{b} \times \vec{a} = \vec{c} \times \vec{a}$. If the angle between the vector \vec{c} and the vector $3\hat{i} + 4\hat{j} + \hat{k}$ is θ , then the greatest integer less than or equal to $\tan^2\theta$ is

Ans. Official answer NTA (38)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 01 February Shift-2

Question ID: 9561771242

23. If
$$\frac{dx}{dy} = \frac{1 + x - y^2}{y}$$
, $x(1) = 1$, then $5x(2)$ is equal to ______.

Ans. Official answer NTA(5)

Sol.

Question ID: 9561771243

Three points O(0, 0), P(a, a²), Q(-b, b²), a > 0, b > 0, are on the parabola y = x². Let S_1 be the area of the region bounded by the line PQ and the parabola, and S_2 be the area of the triangle OPQ. If the minimum value of $\frac{S_1}{S_2}$ is $\frac{m}{n}$, gcd(m, n) = 1, then m + n is equal to ______.

Ans. Official answer NTA(7)

Sol.

Question ID: 9561771241

The sum of squares of all possible values of k, for which area of the region bounded by the parabolas $2y^2 = kx$ and $ky^2 = 2(y - x)$ is maximum, is equal to _____.

Ans. Official answer NTA(8)

Sol.

Question ID: 9561771239

26. Let
$$f:(0,\infty) \to R$$
 and $F(x) = \int_0^x t f(t) dt$. If $F(x^2) = x^4 + x^4$, then $\sum_{r=1}^{12} f(r^2)$ is equal to ______.

Ans. Official answer NTA (219)

Sol.

Question Paper With Text Solution (Mathematics)

JEE Main January 2024 | 01 February Shift-2

Question ID: 9561771236

27.	Let $A = I_2 - 2$ MM ^T , where M is a real matrix of order 2×1 such that the relation M ^T M = I_1 holds. If λ is a real number such that the relation $AX = \lambda X$ holds for some non-zero real matrix X of order 2×1 , then the sum
	of squares of all possible values of λ is equal to
Ans.	Official answer NTA(2)
Sol.	
Question ID: 9561771237	
28.	The lines L_1, L_2, \ldots, L_{20} are distinct. For $n = 1, 2, 3, \ldots, 10$ all the lines L_{2n-1} are parallel to each other and all the lines L_{2n} pass through a given point P. The maximum number of points of intersection of pairs of lines
	from the set $\{L_1, L_2, \ldots, L_{20}\}$ is equal to
Ans.	Official answer NTA(101)
Sol.	
Question ID : 9561771244	
29.	Let ABC be an isosceles triangle in which A is at $(-1, 0)$, $\angle A = \frac{2\pi}{3}$, AB = AC and B is on the positive x-axis.
	If BC = $4\sqrt{3}$ and the line BC intersects the line $y = x + 3$ at (α, β) , then $\frac{\beta^4}{\alpha^2}$ is
Ans.	Official answer NTA (36)
Sol.	
301.	
Question ID: 9561771238	
30.	If three successive terms of a G.P. with common ratio $r(r > 1)$ are the lengths of the sides of a triangle and $[r]$
50.	
	denotes the greatest integer less than or equal to r, then $3[r] + [-r]$ is equal to
Ans.	Official answer NTA(1)
Sol.	

MATRIX JEE ACADEMY