JEE Adv. May 2025 Question Paper With Text Solution 18 May | Paper-2

PHYSICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE Adv. May 2025 | 18 May Paper-2

IEE ADV. MAY 2024 | 26^{TH.} MAY PAPER-2

SECTION - 1 (MAXIMUM MARKS: 12)

- This section contains **FOUR (04)** question stems.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

A temperature difference can generate e.m.f. in some materials. Let S be the e.m.f. produced per unit temperature 1. difference between the ends of a wire, σ the electrical conductivity and k the thermal conductivity of the material of the wire. Taking M, L, T, I and K as dimensions of mass, length, time, current and temperature,

respectively, the dimensional formula of the quantity $Z = \frac{S^2 \sigma}{I_0}$ is:

कुछ पदार्थों में तापान्तर के कारण e.m.f. उत्पन्न हो सकता है। माना कि S एक तार के सिरों के बीच उत्पन्न e.m.f. प्रति एकांक तापान्तर (e.m.f. per unit temperature difference) है। इस तार के पदार्थ की विदयत चालकता (electrical conductivity) और तापीय चालकता (thermal conductivity) क्रमशः σ और k हैं। यदि M, L, T, I और K क्रमशः द्रव्यमान, लम्बाई, समय, धारा

और तापमान की विमायें हों, तो $Z = \frac{S^2 \sigma}{k}$ का विमीय सूत्र (dimensional formula) है :

(A)
$$[M^0L^0T^0I^0K^0]$$

(B)
$$[M^0L^0T^0I^0K^{-1}]$$

(C)
$$[M^1L^2T^{-2}I^{-1}K^{-1}]$$

(B)
$$[M^0L^0T^0I^0K^{-1}]$$
 (C) $[M^1L^2T^{-2}I^{-1}K^{-1}]$ (D) $[M^1L^2T^{-4}I^{-1}K^{-1}]$

В Ans.

Sol.
$$S = \frac{\text{emf}}{\text{temp.}} = \frac{\text{volt}}{\text{temp.}} = \frac{\text{Energy}}{\text{Charge} \times \text{temp.}} = \frac{\text{ML}^2 \text{T}^{-2}}{[\text{IT}][\text{K}]}$$

[S] =
$$ML^2T^{-3}I^{-1}K^{-1}$$

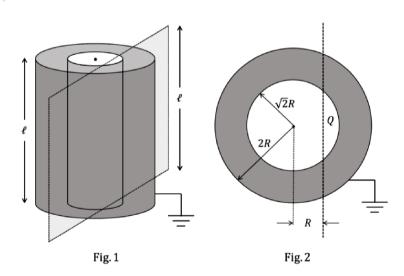
$$\Delta V = iR = \frac{i\rho l}{A} = \frac{il}{\sigma A}$$

$$\Rightarrow \sigma = \frac{iI}{\Delta VA} = \frac{IL}{\left\lceil \frac{ML^2T^{-2}}{IT} \right\rceil \times L^2} = M^{-1}L^{-3}T^3I^2$$

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

$$\frac{dQ}{dt} = \frac{kA\Delta T}{l} \Rightarrow k = \frac{dQ}{dt} \times \frac{l}{A\Delta T} = \frac{ML^{2}T^{-2}}{T} \times \frac{L}{L^{2}K}$$


 $\mathbf{k} = \mathbf{M} \mathbf{L} \mathbf{T}^{-3} \mathbf{K}^{-1}$

$$[Z] = \frac{[M^{2}L^{4}T^{-6}I^{-2}K^{-2}][M^{-1}L^{-3}T^{3}I^{2}]}{MLT^{-3}K^{-1}}$$

$$= [M^{0}L^{0}T^{0}I^{0}K^{-1}]$$

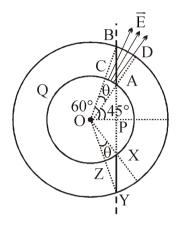
Two co-axial conducting cylinders of same length l with radii $\sqrt{2}R$ and 2R are kept, as shown in Fig. 1. The charge on the inner cylinder is Q and the outer cylinder is grounded. The annular region between the cylinders is filled with a material of dielectric constant k = 5. Consider an imaginary plane of the same length l at a distance R from the common axis of the cylinders. This plane is parallel to the axis of the cylinders. The cross-sectional view of this arrangement is shown in Fig. 2. Ignoring edge effects, the flux of the electric field through the plane is (ϵ_0 is the permittivity of free space):

दो समाक्षीय (co-axial) चालक बेलन चित्र 1 के अनुसार रखे हुए हैं । बेलनों की त्रिज्यायें $\sqrt{2}R$ एवं 2R हैं और दोनों की लम्बाई l है । आतंरिक बेलन पर आवेश Q है और बाहरी बेलन को भूसंपर्कित (grounded) किया गया है । बेलनों के बीच के वलयाकार क्षेत्र (annular region) में k=5 परावैद्युतांक (dielectric constant) का पदार्थ भरा है । माना कि समान लम्बाई l का एक काल्पनिक तल (imaginary plane) बेलनों के सम—अक्ष (common axis) से R दूरी पर है । यह तल बेलनों की अक्ष के समांतर है । इस व्यवस्था के अनुप्रस्थ काट (cross-section) को चित्र 2 में दिखाया गया है । कोर—प्रभावों (edge effects) की उपेक्षा करते हुए, विद्युत् क्षेत्र का काल्पनिक तल से गुजरने वाला पलक्स (flux) है : (ϵ_0 मुक्त आकाश की विद्युतशीलता (permittivity) है)

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

(A)
$$\frac{Q}{30\epsilon_0}$$


(B)
$$\frac{Q}{15\epsilon_0}$$

(C)
$$\frac{Q}{60\epsilon_0}$$

(D)
$$\frac{Q}{120\epsilon_0}$$

Ans. C

Sol. The electric lines of forces will be as shown in figure. The flux on the plane will be generated on part AB & XY of plane. To calculate it we can use gauss law.

$$\phi = \frac{Q_{\rm enc}}{\epsilon_{\rm medium}} = \frac{Q_{\rm enc}}{K\epsilon_{\rm 0}}$$

From $\triangle AOP \& \triangle BOP$ we can find $\angle AOP = 45^{\circ} \& \angle BOP = 60^{\circ}$.

Consider closed volume OABO over the whole length of cylinder.

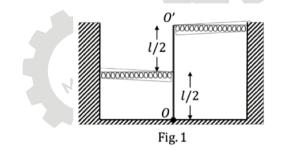
$$\phi_{\rm AB} = \frac{Q_{arc\,AC}}{K\epsilon_0}, Similarly\,\phi_{xy} = \phi_{AB}\,by\,symmetry$$

$$Q_{AC} = Q \times \frac{\theta}{360} = Q \times \frac{15}{360} = \frac{Q}{24}$$

$$\phi_{\mathrm{net}} = 2\phi_{\mathrm{AB}} = 2\times\frac{Q}{24\times5\epsilon_{\mathrm{0}}} = \frac{Q}{60\epsilon_{\mathrm{0}}}$$

MATRIX MATRIX

Question Paper With Text Solution (Physics)

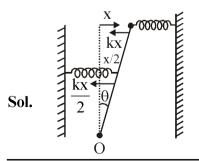

JEE Adv. May 2025 | 18 May Paper-2

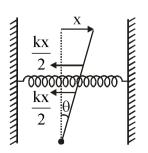
As shown in the figures, a uniform rod OO' of length l is hinged at the point O and held in place vertically between two walls using two massless springs of same spring constant. The springs are connected at the midpoint and at the top-end (O') of the rod, as shown in Fig. 1 and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is f_1 . On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2 and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is f_2 . Ignoring gravity and assuming motion only in the plane of f_2 .

the diagram, the value of $\frac{f_{_{1}}}{f_{_{2}}}$ is :

एक l लम्बाई की एकसमान छड़ OO' को बिन्दु O पर चित्रानुसार हिंज (hinge) किया जाता है। छड़ को दो समान कमानी स्थिरांक (springs constant) वाली द्रव्यमान रहित कमानियों (springs) की सहायता से दो दीवारों के बीच में ऊर्ध्वाधर रूप से रखा गया है। एक कमानी को छड़ के मध्य बिन्दु पर और दूसरी को सबसे ऊपरी बिन्दु O' पर चित्र 1 के अनुसार जोड़ा गया है। एक छोटे कोणीय विस्थापन (angular displacement) के कारण छड़ f_1 आवृत्ति के दोलन (oscillation) करती है। यदि दोनों कमानियों को छड़ के मध्य बिन्दु पर चित्र 2 के अनुसार जोड़ा जाता है तो एक छोटे कोणीय विस्थापन (angular displacement) के कारण छड़ f_2 आवृत्ति

के दोलन (oscillation) करती है। गुरूत्वीय प्रभाव की उपेक्षा करते हुए और गित को आरेख (diagram) के तल में ही मानते हुये, $\frac{\mathbf{f_1}}{\mathbf{f_2}}$ का मान है :


(A) 2


(B) $\sqrt{2}$

(C) $\sqrt{\frac{5}{2}}$

(D) $\sqrt{\frac{2}{5}}$

Ans. C

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Adv. May 2025 | 18 May Paper-2

 $\tau = I \alpha$

 $\tau = I \alpha$

$$kxl\cos\theta + \frac{kx}{2}\frac{1}{2}\cos\theta = \frac{ml^2}{3}\alpha$$

$$\frac{kx}{2}\frac{1}{2}\cos\theta\times2=\frac{ml^2}{3}\alpha$$

$$\frac{5}{4} kx l \cos \theta = \frac{m l^2}{3} \alpha$$

$$k\frac{(1\sin\theta)}{2}1\cos\theta = \frac{ml^2}{3}\alpha$$

$$\frac{5}{4}k(l\sin\theta)l\cos\theta = \frac{ml^2}{3}\alpha$$

$$\alpha = \frac{15k}{4m}\theta$$

$$\alpha = \frac{3k}{2m}\theta$$

$$\omega = \sqrt{\frac{15k}{4m}}$$

$$\omega = \sqrt{\frac{3k}{2m}}$$

$$f_1 = \frac{1}{2\pi} \sqrt{\frac{15k}{4m}}$$

$$f_2 = \frac{1}{2\pi} \sqrt{\frac{3k}{2m}}$$

$$\frac{\mathbf{f}_1}{\mathbf{f}_2} \Rightarrow \sqrt{\frac{5}{2}}$$

4. Consider a star of mass m_2 kg revolving in a circular orbit around another star of mass m_1 kg with $m_1 >> m_2$. The heavier star slowly acquires mass from the lighter star at a constant rate of γ kg/s. In this transfer process, there is no other loss of mass. If the separation between the centers of the stars is r, then its relative rate of change $\frac{1}{r} \frac{dr}{dt}$ (in s⁻¹) is given by:

माना कि \mathbf{m}_2 kg द्रव्यमान का एक तारा (star) \mathbf{m}_1 kg द्रव्यमान के दूसरे तारे के परितः वृत्ताकार कक्षा (circular orbit) में परिक्रमा कर रहा है और $\mathbf{m}_1 >> \mathbf{m}_2$ है । भारी तारा हल्के तारे से γ kg/s की धीमी नियत दर (slow constant rate) से द्रव्यमान ग्रहण करता है । इस स्थानांतरण प्रक्रिया में द्रव्यमान की और कोई हानि नहीं होती है । यदि तारों के केंद्र बिन्दुओं के बीच की दूरी \mathbf{r} है तब इसकी

सापेक्षिक परिवर्तन दर (relative rate of change) $\frac{1}{r} \frac{dr}{dt}$ (in s⁻¹ में) है :

$$(A) -\frac{3\gamma}{2m_2}$$

(B)
$$-\frac{2\gamma}{m_2}$$

(C)
$$-\frac{2\gamma}{m_1}$$

(D)
$$-\frac{3\gamma}{2m_1}$$

Ans. B

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

Sol.

$$\frac{Gm_1m_2}{r^2} = \frac{m_2v^2}{r}$$

$$v = \sqrt{\frac{Gm_1}{r}}$$

Angular momentan w.r.t. to m

$$L=m_{_{2}}vr=m_{_{2}}\sqrt{\frac{Gm_{_{1}}}{r}}.r$$

$$L = m_2 \sqrt{Gm_1 r}$$

Angular momentum is constant so $\frac{dL}{dt} = 0$ & m_1 can be considered constant with time.

$$\frac{dL}{dt} = \sqrt{Gm_1r}.\frac{dm_2}{dt} + m_2\sqrt{Gm_1}.\frac{1}{2\sqrt{r}}\frac{dr}{dt}$$

$$O = \sqrt{Gm_1} \left[\gamma \sqrt{r} + m_2 \frac{1}{2\sqrt{r}} \frac{dr}{dt} \right]$$

$$\frac{m_2}{2\sqrt{r}}\frac{dr}{dt} = -\gamma\sqrt{r}$$

$$\frac{1}{r}\frac{dr}{dt} \Longrightarrow -\frac{2\gamma}{m_2}$$

JEE Adv. May 2025 | 18 May Paper-2

SECTION - 2 (MAXIMUM MARKS: 16)

• This section contains **FOUR (04)** question stems.

• Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s).

• For each question, choose the option(s) corresponding to (all) the correct answer(s).

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 **ONLY** if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct;

Partial Marks :+1 If two or more options are correct but ONLY one option is chosen and it is

acorrect option;

Zero Marks : 0 If unanswered;

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.

5. A positive point charge of 10⁻⁸ C is kept at a distance of 20 cm from the center of a neutral conducting sphere of radius 10 cm. The sphere is then grounded and the charge on the sphere is measured. The grounding is then removed and subsequently the point charge is moved by a distance of 10 cm further away from the center of

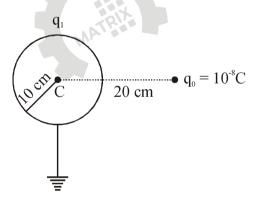
the sphere along the radial direction. Taking $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2 / \text{C}^2$ (where ϵ_0 is the permittivity of free space), which of the following statements is/are correct:

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

- (A) Before the grounding, the electrostatic potential of the sphere is 450 V.
- (B) Charge flowing from the sphere to the ground because of grounding is 5×10^{-9} C.
- (C) After the grounding is removed, the charge on the sphere is -5×10^{-9} C.
- (D) The final electrostatic potential of the sphere is 300 V.

एक 10^{-8} C का धनात्मक बिंदु आवेश (positive point charge) एक 10 cm त्रिज्या (radius) वाले अनावेशित चालक गोले (neutral conducting sphere) के केन्द्र से 20 cm की दूरी पर रखा है। इसके बाद गोले को भूसंपर्कित (grounded) किया जाता है, और गोले का आवेश मापा जाता है। फिर गोले का भूसंपर्क हटा दिया जाता है और तत्पश्चात बिंदु आवेश को गोले के केन्द्र से त्रिज्य


दिशा में 10~cm और दूर किया जाता है । $\frac{1}{4\pi\epsilon_0}$ = $9\times10^9~\text{Nm}^2$ / $C^2~(\epsilon_0~\text{मुक्त आकाश की विद्युतशीलता (permittivity) है)$

लेते हुए निम्नलिखित कथनों में से कौन सा/से सही है/हैं:

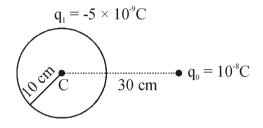
- (A) भूसंपर्क से पहले, गोले का स्थिरवैद्युत विभव (electrostatic potential) 450 V है।
- (B) भूसंपर्क के कारण गोले से भूमि में प्रवाहित होने वाला आवेश $5 \times 10^{-9} \, \mathrm{C}$ है।
- (C) भूसंपर्क हटाने के पश्चात गोले पर आवेश $-5 \times 10^{-9} \, \mathrm{C}$ है।
- (D) अन्ततः गोले का स्थिरवैद्युत विभव (electrostatic potential) 300 V है।

Ans. ABC

Sol. Initially sphere is neutral. Now it is grounded. Assume q_1 charge is on sphere.

Charge on sphere will be non-uniform that means potential of sphere can be calculated at center only.

$$V_{\rm C} = \frac{kq_{\rm 1}}{0.1} + \frac{kq_{\rm 0}}{0.2} = 0$$


MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

$$q_1 = \frac{-q_0}{2} = \frac{-1}{2} \times 10^{-8} C$$

- (C) Charge on sphere after grounding is removed = $q_1 = -5 \times 10^{-9}$ C
- (B) Charge flow from sphere to ground = 5×10^{-9} C
- (A) Before grounding potential of sphere = $\frac{kq_0}{0.2} = \frac{9 \times 10^9 \times 10^{-8}}{0.2} = 450 \text{V}$
- (D) After grounding is removed charge on sphere remains same

Final potential of sphere = $\frac{K(q_1)}{0.1} + \frac{K(q_0)}{0.3}$

$$=\frac{-9\times10^{9}\times5\times10^{-9}}{0.1}+\frac{9\times10^{9}\times10^{-8}}{0.3}$$

$$=-150 \text{ V}$$

6. Two identical concave mirrors each of focal length f are facing each other as shown in the schematic diagram. The focal length f is much larger than the size of the mirrors. A glass slab of thickness t and refractive index n_0 is kept equidistant from the mirrors and perpendicular to their common principal axis. A monochromatic point light source S is embedded at the center of the slab on the principal axis, as shown in the schematic diagram. For the image to be formed on S itself, which of the following distances between the two mirrors is/are correct:

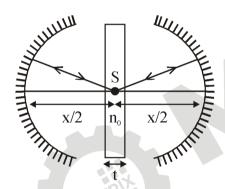

दो समान फोकस दूरी (focal length) f वाले समरूप (identical) अवतल दर्पण (concave mirror) आमने—सामने व्यवस्था आरेख (schematic diagram) के अनुसार रखे हुए हैं। फोकस दूरी f, दर्पणों के साइज़ से बहुत ज्यादा है। एक काँच की सिल्ली (glass slab) जिसकी मोटाई (thickness) f और अपवर्तनांक (refractive index) f0, है, दोनों दर्पणों से बराबर दूरी पर दर्पणों के सम मुख्य अक्ष (common principal axis) के लम्बवत रखी गयी है। एक एकवर्णी बिंदु प्रकाश स्त्रोत (monochromatic point light source) f1, मुख्य अक्ष पर स्थित सिल्ली के मध्य बिंदु पर व्यवस्था आरेख के अनुसार अंतःस्थापित (embedded) है। प्रतिबिम्ब को

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

S पर ही बनने के लिए दोनों दर्पणों के बीच की निम्न दूरियों में से कौन सी/से दूरी (यां) सही है/हैं :

(A)
$$4f + \left(1 - \frac{1}{n_0}\right)t$$
 (B) $2f + \left(1 - \frac{1}{n_0}\right)t$ (C) $4f + (n_0 - 1)t$ (D) $2f + (n_0 - 1)t$


(B)
$$2f + \left(1 - \frac{1}{n_0}\right)t$$

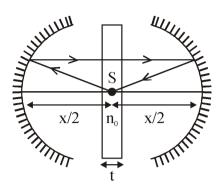
(C)
$$4f + (n_0 - 1)t$$

(D)
$$2f + (n_0 - 1)t$$

Ans. AB

Situation - 1 Sol.

Using normal shift due to slab \rightarrow in direction of incident ray.

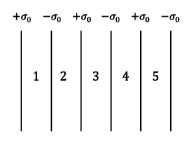

$$\frac{x}{2} - \left(1 - \frac{1}{n_0}\right) \frac{t}{2} = 2f$$

$$\mathbf{x} = 4\mathbf{f} + \left(1 - \frac{1}{\mathbf{n}_0}\right)\mathbf{t}$$

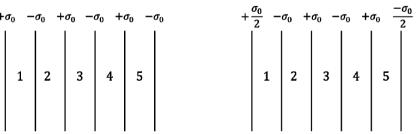
Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Situation - 2


$$\frac{x}{2} - \left(1 - \frac{1}{n_0}\right) \frac{t}{2} = f$$

$$x = 2f + \left(1 - \frac{1}{n_0}\right)t$$


7. Six infinitely large and thin non-conducting sheets are fixed in configurations I and II. As shown in the figure, the sheets carry uniform surface charge densities which are indicated in terms of σ_0 . The separation between any two consecutive sheets is 1 μ m. The various regions between the sheets are denoted as 1, 2, 3, 4 and 5. If σ_0 = 9 μ C/m², then which of the following statements is/are correct:

(Take permittivity of free space $\varepsilon_0 = 9 \times 10^{-12} \, \text{F/m}$)

एक समान दूरी पर रखी हुई छः अपरिमित कुचालक पतली परतें (infinitely large, non-conducting, thin sheets) विन्यासों (configurations) I और II के अनुसार स्थिर रखी हैं। परतों पर एकसमान पृष्ठ आवेश घनत्व (uniform surface charge densities) हैं, जिनको σ_0 के रूप में चित्रानुसार इंगित (indicated) किया गया है। कोई भी दो क्रमानुगत परतों के बीच की दूरी 1 μm है । परतों के बीच के विभिन्न भागों (regions) को 1, 2, 3, 4 और 5 से दर्शाया गया है । यदि $\sigma_{_0}$ = 9 $\mu C/m^2$ है, तो निम्नलिखित कथनों में से कौन सा/से सही है/हैं : (मुक्त आकाश की विद्युतशीलता (permittivity of free space) का मान $\epsilon_0 = 9 \times 10^{-12}$ F/m लें)

Configuration I

Configuration II

MAIKIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

(A) In region 4 of the configuration I, the magnitude of the electric field is zero.

- (B) In region 3 of the configuration II, the magnitude of the electric field is $\frac{\sigma_0}{\epsilon_0}$.
- (C) Potential difference between the first and the last sheets of the configuration I is 5 V.
- (D) Potential difference between the first and the last sheets of the configuration II is zero.
- (A) विन्यास I के भाग 4 में विद्युत् क्षेत्र का परिमाण शून्य है।
- (B) विन्यास II के भाग 3 में विद्युत् क्षेत्र का परिमाण $\dfrac{\sigma_{_0}}{\epsilon_{_0}}$ है।
- (C) विन्यास I की पहली और अंतिम परतों के बीच विभवान्तर का मान $5\ V$ है।
- (D) विन्यास II की पहली और अंतिम परतों के बीच विभवान्तर का मान शून्य है।

Ans. A

Sol.

Electric field in region 1 is $\frac{\sigma_0}{\epsilon_0}$ right ward

Electric field in region 2 is 0

Electric field in region 3 is $\frac{\sigma_0}{\epsilon_0}$ right ward

Electric field in region 4 is 0

Electric field in region 5 is $\frac{\sigma_0}{\epsilon_0}$ right ward

Potential difference between first and last sheet

$$=3\left(\frac{\sigma_0}{\epsilon_0}\times d\right)=3$$

Electric field in region 1 is $\frac{\sigma_0}{2\epsilon_0}$ right ward

Electric field in region 2 is $\frac{\sigma_0}{2\epsilon_0}$ left ward

Electric field in region 3 is $\frac{\sigma_0}{2\epsilon_0}$ right ward

Electric field in region 4 is $\frac{\sigma}{2\epsilon_0}$ left ward

Electric field in region 5 is $\frac{\sigma}{2\epsilon_0}$ right ward

Potential difference between first and last sheet

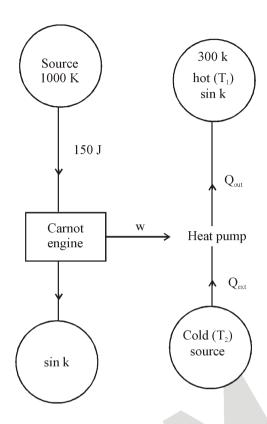
$$= \frac{\sigma_0}{2 \in_0} \times d = 0.5$$

Question Paper With Text Solution (Physics)

JEE Adv. May 2025 | 18 May Paper-2

- 8. The efficiency of a Carnot engine operating with a hot reservoir kept at a temperature of 1000 K is 0.4. It extracts 150 J of heat per cycle from the hot reservoir. The work extracted from this engine is being fully used to run a heat pump which has a coefficient of performance 10. The hot reservoir of the heat pump is at a temperature of 300 K. Which of the following statements is/are correct:
 - (A) Work extracted from the Carnot engine in one cycle is 60 J.
 - (B) Temperature of the cold reservoir of the Carnot engine is 600 K.
 - (C) Temperature of the cold reservoir of the heat pump is 270 K.
 - (D) Heat supplied to the hot reservoir of the heat pump in one cycle is 540 J.

एक कार्नी इंजन, तापमान 1000 K पर स्थित एक गर्म ऊष्मा भंडार, (hot reservoir) के साथ कार्य कर रहा है। कार्नी इंजन की दक्षता (efficiency) 0.4 है। यह इंजन गर्म ऊष्मा एक चक्र में लेता है। इस इंजन से प्राप्त कार्य को एक ऊष्मा पंप को चलाने के लिए पूर्ण रूप से उपयोग किया जाता है। ऊष्मा पंप का निष्पादन गुणांक (coefficient of performance) 10 है। ऊष्मा पंप के गर्म ऊष्मा भंडार का तापमान 300 K है। निम्नलिखित कथनों में से कौन सा/से सही है/हैं:


- (A) कार्नो इंजन से एक चक्र में प्राप्त किया गया कार्य 60 J है।
- (B) कार्नी इंजन के शीत भंडार (cold reservoir) का तापमान 600 K है।
- (C) ऊष्मा पंप के शीत भंडार का तापमान 270 K है।
- (D) ऊष्मा पंप के गर्म ऊष्मा भंडार को एक चक्र में दी गयी ऊष्मा 540 J है।

Ans. ABC

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

Sol.

For heat engine $\eta = 0.4$

$$\therefore$$
 w= 0.4 × 150 = 60 J

and heat rejected = 90 J

Temperature of sink = 600 k

$$COP = \frac{Q_{out}}{W} \Longrightarrow \Delta Q_{out} = 600J$$

$$\therefore$$
 Q_{extracted} (cold source) = $600 - 60$

$$= 540 J$$

Also
$$w = Q_{ext} \left(\frac{T_1}{T_2} - 1 \right)$$

$$\Rightarrow$$
 T₂ = 270 k

MATRIX JEE ACADEMY

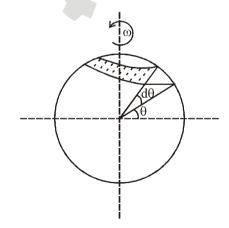
JEE Adv. May 2025 | 18 May Paper-2

SECTION - 3 (MAXIMUM MARKS: 24)

- This section contains **EIGHT (08)** question stems.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.


9. A conducting solid sphere of radius R and mass M carries a charge Q. The sphere is rotating about an axis passing through its center with a uniform angular speed ω . The ratio of the magnitudes of the magnetic dipole moment to the angular momentum about the same axis is given as $\alpha \frac{Q}{2M}$. The value of α is _____.

एक M द्रव्यमान और R त्रिज्या वाले ठोस चालक गोले पर Q आवेश है। गोला अपने केन्द्र से जाने वाली एक अक्ष के परितः एकसमान कोणीय चाल (uniform angular speed) ω सू घूर्णन कर रहा है। उसी अक्ष के परितः चुम्बकीय द्विधुव आघूर्ण (magnetic dipole

moment) और कोणीय संवेग (angular momentum) के परिमाणों का अनुपात $\alpha \frac{Q}{2M}$ है। α का मान है______.

Ans. 1.67

Sol.

$$dq = \frac{Q}{4\pi R^2} (2\pi R^2 \cos\theta d\theta) = \frac{Q}{2} \cos\theta d\theta$$

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

$$di = \frac{(dq)\theta}{2\pi} = \frac{Q\omega\cos\theta d\theta}{4\pi}$$

$$\Rightarrow |\overline{dM}| = (di) Area$$

$$\Rightarrow \mid \overline{dM} \mid = \frac{Q \omega \cos \theta d\theta}{4\pi} (\pi R^2 \cos^2 \theta)$$

$$\Rightarrow \mid \overline{dM} \mid = \frac{Q \omega R^2 \cos^3 \theta d\theta}{4}$$

 \therefore Total magnetic dipole moment, $\mid \overline{M} \mid = \int \mid \overline{dM}$

$$\Rightarrow \mid \overline{M} \mid = \frac{Q \omega R^2}{4} \int_{-\pi/2}^{\pi/2} \cos^3 \theta d\theta = \frac{Q \omega R^2}{4} \int_{-\pi/2}^{\pi/2} \cos \theta (1 - \sin^2 \theta) d\theta$$

Put $\sin \theta = t$

$$\Rightarrow \cos\theta d\theta = dt$$

$$|\overline{M}| = \frac{Q\omega R^2}{4} \int_{-1}^{1} (1 - t^2) dt = \frac{Q\omega R^2}{4} \left[t - \frac{t^3}{3} \right]_{-1}^{1} = \frac{Q\omega R^2}{4} \left(\frac{4}{3} \right)$$

$$\Rightarrow |\overline{M}| = \frac{Q\omega R^2}{3}$$

$$\therefore \frac{|\overline{M}|}{L} = \frac{Q \omega R^2 / 3}{\left(\frac{2}{5} M R^2\right) \omega} = \frac{Q}{2M} \left(\frac{5}{3}\right)$$

$$\therefore \alpha = \frac{5}{3} = 1.67$$

Question Paper With Text Solution (Physics)

JEE Adv. May 2025 | 18 May Paper-2

10. A hydrogen atom, initially at rest in its ground state, absorbs a photon of frequency v_1 and ejects the electron with a kinetic energy of 10 eV. The electron then combines with a positron at rest to form a positronium atom in its ground state and simultaneously emits a photon of frequency v_2 . The center of mass of the resulting positronium atom moves with a kinetic energy of 5 eV. It is given that positron has the same mass as that of electron and the positronium atom can be considered as a Bohr atom, in which the electron and the positron orbit around their center of mass. Considering no other energy loss during the whole process, the difference between the two photon energies (in eV) is ______.

एक हाइड्रोजन परमाणु, जोिक आरम्भ में विरामावस्था में है, अपनी मूल अवस्था (ground state) में v_1 आवृत्ति के फोटोन को अवशोषित करता है और इससे $10~{\rm eV}$ गतिज ऊर्जा का इलेक्ट्रॉन निकलता है। इस इलेक्ट्रॉन के विरामावस्था में स्थित एक पोजिट्रॉन (positron) के साथ मिलने से मूल अवस्था में स्थित एक पोजिट्रॉनियम परमाणु (positronium atom) बनता है जो उसी समय v_2 आवृत्ति का फोटोन उत्सर्जित करता है। परिणामस्वरूप बनने वाले पोजिट्रॉनियम परमाणु का द्रव्यमान केन्द्र (center of mass) $5~{\rm eV}$ की गतिज ऊर्जा के साथ गतिमान होता है। ये दिया गया है कि पोजिट्रॉन और इलेक्ट्रॉन का द्रव्यमान समान है और पोजिट्रॉनियम परमाणु को बोर परमाणु (Bohr atom) जैसा माना जा सकता है जहाँ पोजिट्रॉन और इलेक्ट्रॉन अपने द्रव्यमान केन्द्र से परितः कक्षा में परिक्रमा करते हैं। माना कि इस पूरी प्रक्रिया में और कोई ऊर्जा क्षय (energy loss) नहीं होता है तो दोनों फोटोन की ऊर्जाओं में अन्तर (eV में) है

Ans. 11.8

Sol.
$$E_{\rm H} = -13.6 \, \text{eV}$$

Energy of absorbed photon = hv_1

Kinetic energy of ejected electron = 10 eV

From energy conservation,

$$hv_1 = 13.6 + 10 = 23.6 \text{ eV}$$

Before the formation of positronium:-

Kinetic energy of electron = 10 eV

Kinetic energy of positron = 0

:. Total energy before =10 eV

After the formation of positronium:-

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

JEE Adv. May 2025 | 18 May Paper-2

Kinetic energy of positronium (COM motion) = 5 eV

Internal energy of positronium in ground

State =
$$(-13.6 \text{ eV}) \frac{\mathbb{Z}^2}{\text{n}^2} \times \frac{\mu}{\text{m}_e}$$

$$=(-13.6 \text{ eV})\frac{(1)^2}{(1)^2} \times \frac{1}{2}$$

$$=-6.8 \, \text{eV}$$

Energy of emitted photon = hv_2

$$\therefore$$
 Total energy after = $5 - 6.8 + hv_2 = hv_2 - 1.8 \text{ eV}$

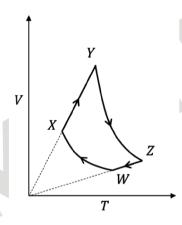
Now from energy conservation,

$$10 = hv_2 - 1.8$$

$$\Rightarrow hv_2 = 10 + 1.8 = 11.8 \text{ eV}$$

$$\therefore$$
 Difference in energy of both photon = $hv_1 - hv_2$

$$=23.6-11.8$$


$$= 11.8 \, eV$$

Question Paper With Text Solution (Physics)

JEE Adv. May 2025 | 18 May Paper-2

An ideal monatomic gas of n moles is taken through a cycle WXYZW consisting of consecutive adiabatic and isobaric quasi-static processes, as shown in the schematic V-T diagram. The volume of the gas at W, X and Y points are, 64 cm^3 , 125 cm^3 and 250 cm^3 , respectively. If the absolute temperature of the gas T_w at the point W is such that $nRT_w = 1 \text{ J}$ (R is the universal gas constant), then the amount of heat absorbed (in J) by the gas along the path XY is _____.

एक आदर्श एकपरमाणुक (monatomic) गैस के n मोल क्रमागत रूप से रूद्धोष्म (adiabatic) और समदाबी (isobaric) स्थैतिककल्प प्रक्रमों (quasi-static processes) से बने हुये WXYZW चक्र से गुजरते हैं, जैसा कि V-T व्यवस्था आरेख (schematic diagram) में दिखाया गया है । गैस के आयतन W, X एवं Y बिन्दुओं पर क्रमशः $64~\mathrm{cm}^3$, $125~\mathrm{cm}^3$ और $250~\mathrm{cm}^3$ हैं । यदि बिन्दु W पर गैस का परम तापमान T_w इस प्रकार है कि $nRT_w = 1~J$ (R सार्वत्रिक गैस स्थिरांक (universal gas constant) है), तब गैस द्वारा XY पथ में अवशोषित ऊष्मा (J में) है______.

Ans. 1.6

Sol. For process $W \rightarrow X$ (adiabatic):

$$TV^{\gamma-1} = constant$$

$$\Rightarrow T_{_{W}}\,V_{_{W}}^{^{\gamma-1}} = T_{_{X}}\!.V_{_{X}}^{^{\gamma-1}}$$

$$\Rightarrow$$
 T_W × (64)^{2/3} = T_X.(125)^{2/3}

$$\Rightarrow T_{X} = T_{W} \times \frac{16}{25}$$

for process $X \rightarrow Y$ (isobaric):

$$V \propto T \Rightarrow \frac{V_{Y}}{V_{Y}} = \frac{T_{Y}}{T_{Y}} = \frac{250}{125} \Rightarrow T_{Y} = 2T_{X}$$

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

heat absorbed along path XY

=
$$nC_p\Delta T = n.\frac{5R}{2}.(T_Y - T_X) = n.\frac{5R}{2}(2T_X - T_X)$$

$$=\frac{5}{2}nR(T_{x})=\frac{5}{2}nR\times\frac{16}{25}.T_{W}$$

$$= 1.6 \text{ nRT}_{\text{W}} = 1.6 \times 1 = 1.6$$

12. A geostationary satellite above the equator is orbiting around the earth at a fixed distance r_1 from the center of the earth. A second satellite is orbiting in the equatorial plane in the opposite direction to the earth's rotation, at a distance r_2 from the center of the earth, such that $r_1 = 1.21 r_2$. The time period of the second satellite as measured from the geostationary satellite is $\frac{24}{p}$ hours. The value of p is _____.

एक भू-स्थिर (geostationary) उपग्रह विषुवत वृत्त (equator) के ऊपर पृथ्वी के परितः पृथ्वी के केन्द्र से \mathbf{r}_1 की नियत दूरी (fixed distance) पर एक कक्षा में परिक्रमण (orbiting) कर रहा है। एक दूसरा उपग्रह विषुवत वृत्त के तल (equatorial plane) में पृथ्वी के केन्द्र से \mathbf{r}_2 दूरी पर पृथ्वी के घूर्णन (rotation) की दिशा के विपरीत दिशा में परिक्रमण कर रहा है, जहाँ $\mathbf{r}_1=1.21~\mathbf{r}_2$ है। दूसरे उपग्रह का भू-स्थिर उपग्रह के सापेक्ष मापा गया आवर्तकाल (time period) $\frac{24}{\mathbf{p}}$ घंटे (hours) है। \mathbf{p} का मान है ______.

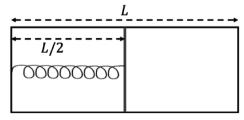
Sol.
$$\frac{T'}{T} = \sqrt{\frac{r'^3}{r^3}} = \frac{1}{(1.21)^{3/2}} = \frac{1}{(1.1)^3}$$

$$\Rightarrow$$
 T' = $\frac{T}{(1.1)^3}$; T = 24 hrs = time period of geostationary satellite

$$\omega_1 t + \omega_2 t = 2\pi$$

$$\Rightarrow t = \frac{2\pi}{\omega_1 + \omega_2} = \frac{2\pi}{\frac{2\pi}{T} + \frac{2\pi}{T'}} = \frac{TT'}{T + T'}$$

JEE Adv. May 2025 | 18 May Paper-2

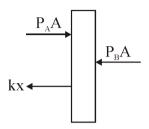

$$t = \frac{T \cdot \frac{T}{(1.1)^3}}{T + \frac{T}{(1.1)^3}} = \frac{T}{1 + (1.1)^3} = \frac{24}{1 + (1.1)^3} \text{ hours}$$

$$t = \frac{24}{p}$$

$$\therefore p = 1 + (1.1)^3 = 2.331 = 2.33$$

13. The left and right compartments of a thermally isolated container of length L are separated by a thermally conducting, movable piston of area A. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant k and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A}\alpha$, then the value of α is ______.

L लम्बाई वाले एक ऊष्मीय रूप से विलगित पात्र (thermally isolated container) को क्षेत्रफल A के एक ऊष्मीय चालक, चल (thermally conducting, movable) पिस्टन द्वारा बायें और दायें कोष्ठों (compartments) में विभाजित किया गया है। पात्र के बायें और दायें कोष्ठों में एक आदर्श गैस के क्रमशः $\frac{3}{2}$ और 1 मोल को रखा गया है। बायीं ओर के कोष्ठ में k कमानी स्थिरांक (spring constant) और $\frac{2L}{5}$ मूल लम्बाई (natural length) की एक कमानी (spring) को पिस्टन से संलग्न किया गया है। चित्रानुसार ऊष्मागितक साम्य (thermodynamic equilibrium) में पिस्टन की पात्र के दोनों छोरों से दूरी $\frac{L}{2}$ है। इस परिस्थित में, यिद दायें कोष्ठ में दाब $P = \frac{kL}{\Delta} \alpha$ है, तो α का मान है ______.


MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Adv. May 2025 | 18 May Paper-2

Ans. 0.2

Sol. FBD of piston under equilibrium

$$P_A A = P_B A + kx$$

$$(P_A - P_B) A = kx \dots (1)$$

Also,
$$x = \frac{L}{2} - \frac{2L}{5} = \frac{L}{10}$$
(2)

Equating temperature in both compartment:

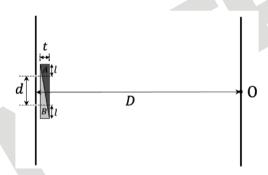
$$\frac{P_{\rm A}V_{\rm A}}{n_{\rm A}R} = \frac{P_{\rm B}V_{\rm B}}{n_{\rm B}R}$$

$$P_{A} = \frac{n_{A}}{n_{B}} P_{B} = \frac{3}{2} P_{B} \dots (3)$$

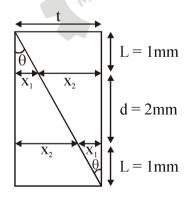
From equation (1), (2), (3)

$$\left(\frac{3}{2}P_{\rm B} - P_{\rm B}\right)A = \frac{kL}{10}$$

$$P_{\rm B} = \frac{kL}{A} 0.2$$


$$\alpha = 0.2$$

JEE Adv. May 2025 | 18 May Paper-2


In a Young's double slit experiment, a combination of two glass wedges A and B, having refractive indices 1.7 and 1.5, respectively, are placed in front of the slits, as shown in the figure. The separation between the slits is d=2 mm and the shortest distance between the slits and the screen is D=2 m. Thickness of the combination of the wedges is t=12 μ m. The value of l as shown in the figure is 1 mm. Neglect any refraction effect at the slanted interface of the wedges. Due to the combination of the wedges, the central maximum shifts (in mm) with respect to O by

यंग के एक द्विझिरी (double slit) प्रयोग में, कांच के दो वेज (wedges) A और B जिनके अपवर्तनांक (refractive index) के मान क्रमशः 1.7 और 1.5 है, का एक संयोजन झिरीयों के सामने चित्रानुसार रखा गया है। झिरीयों के बीच की दूरी d=2 mm है। झिरीयों और परदे के बीच की निम्नतम दूरी D=2 m है और वेज के संयोजन की मोटाई t=12 μ m है। चित्रानुसार I का मान I mm है। दोनों वेज के तिरछे अन्तरापृष्ठ (slanted interface) पर आवर्तन की उपेक्षा करें। कांच के वेज के संयोजन के कारण केन्द्रीय उच्चिष्ठ (central maximum) का O के सापेक्ष विस्थापन (mm में) है

Ans. 1.2 mm

Sol.

$$\tan \theta = \frac{t}{4} = \frac{x_1}{1} = \frac{x_2}{3}$$

$$\therefore \mathbf{x}_1 = \frac{\mathbf{t}}{4}$$

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

$$x_2 = \frac{3t}{4}$$

optical path difference:

$$(1.7 x_2 + 1.5 x_1) - (1.7 x_1 + 1.5 x_2) = \Delta$$

$$1.7 (x_2 - x_1) - 1.5 (x_2 - x_1) = \Delta$$

$$\Delta = 0.2 (x_2 - x_1)$$

$$=0.2\left(\frac{t}{2}\right)=\frac{t}{10}$$

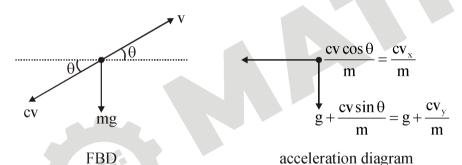
Also, the shift will be

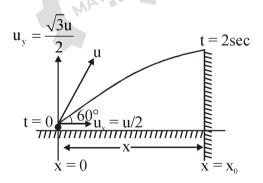
$$y = \frac{D\Delta}{d} = \frac{Dt}{10d}$$

 $= 1.2 \, \text{mm}$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)


JEE Adv. May 2025 | 18 May Paper-2


A projectile of mass 200 g is launched in a viscous medium at an angle 60° with the horizontal, with an initial velocity of 270 m/s. It experiences a viscous drag force $\vec{F} = -c\vec{V}$ where the drag coefficient c = 0.1 kg/s and \vec{V} is the instantaneous velocity of the projectile. The projectile hits a vertical wall after 2 s. Taking e = 2.7, the horizontal distance of the wall from the point of projection (in m) is _____.

एक 200 g के प्रक्षेप्य (projectile) को क्षैतिज (horizontal) से 60° के कोण पर 270 m/s के प्रारंभिक वेग से श्यान माध्यम (viscous medium) में प्रक्षेपित किया जाता है। श्यान माध्यम में प्रक्षेप्य पर $\vec{F} = -c\vec{v}$ कर्षण-बल (drag force) लगता है, जहाँ c=0.1~kg/s कर्ष गुणांक (drag coefficient) है और \vec{v} प्रक्षेप्य का तात्क्षिणिक वेग (instantaneous velocity) है। प्रक्षेप्य 2~s के पश्चात् एक ऊर्ध्वाधर दीवार से टकराता है। e=2.7 लेने पर दीवार की प्रक्षेपण बिन्दु (point of projection) से क्षैतिज दूरी (m में) है

Ans. 170.00 m

Sol. at any time t

$$a_x = -\frac{cv_x}{m} = -\frac{v_x}{2} = v_x \frac{dv_x}{dx}$$

$$\Rightarrow \int_{u_{x}}^{v_{x}} dv_{x} = -\int_{0}^{x_{0}} \frac{dx}{2} \Rightarrow v_{x} - \frac{u}{2} = -\frac{x_{0}}{2}$$

MATRIX JEE ACADEMY

JEE Adv. May 2025 | 18 May Paper-2

$$\Rightarrow$$
 $\mathbf{v}_{x} = \frac{\mathbf{u}}{2} - \frac{\mathbf{x}_{0}}{2}$

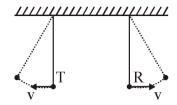
$$a_x = \frac{dv_x}{dt} = -\frac{cv_x}{m} \Rightarrow \frac{dv_x}{dt} = -\frac{v_x}{2} \Rightarrow \int_{0}^{v_x} \frac{dv_x}{v_x} = -\int_0^2 \frac{dt}{2}$$

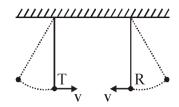
$$= \ln \frac{v_x}{u/2} = -1 \Rightarrow v_x = \frac{u}{2}e^{-1} = \frac{u}{2e}$$

$$x_0 = u - 2v_x = 270 - 2 \times \frac{270}{2 \times 2.7} = 170m$$

16. An audio transmitter (T) and a receiver (R) are hung vertically from two identical massless strings of length 8 m with their pivots well separated along the X axis. They are pulled from the equilibrium position in opposite directions along the X axis by a small angular amplitude $\theta_0 = \cos^{-1}(0.9)$ and released simultaneously. If the natural frequency of the transmitter is 660 Hz and the speed of sound in air is 330 m/s, the maximum variation in the frequency (in Hz) as measured by the receiver (Take the acceleration due to gravity $g = 10 \text{ m/s}^2$) is

एक श्रव्य प्रेषित (audio transmitter) (T) और एक अभिग्राही (receiver) (R) दो समरूप (identical) द्रव्यमान रहित $8\,\mathrm{m}$ लम्बाई के धागों के द्वारा अपने कीलकों (pivots) से ऊर्ध्वाधर रूप में लटके हैं। दोनों कीलक X अक्ष के अनुदिश एक दूसरे से बहुत दूर स्थित हैं। प्रेषित्र और अभिग्राही को उनकी साम्यावस्था से विपरीत दिशाओं में X अक्ष के अनुदिश लघु कोणीय आयाम (small angular amplitude) $\theta_0 = \cos^{-1}(0.9)$ से खींच कर एक साथ छोड़ा जाता है। गुरूत्वीय त्वरण का मान $g = 10\,\mathrm{m/s^2}$ लें। यदि प्रेषित्र की प्राकृतिक आवृत्ति (natural frequency) $660\,\mathrm{Hz}$ है और वायु में ध्विन की चाल $330\,\mathrm{m/s}$ है, तब अभिग्राही द्वारा मापी गयी आवृत्ति में अधिकतम बदलाव (Hz में) है ______.





JEE Adv. May 2025 | 18 May Paper-2

Ans. 32.00 Hz

Sol.

For
$$f_R = f_{max}$$

$$\mathbf{f}_{\text{max}} = \left(\frac{\mathbf{v}_{\text{s}} + \mathbf{v}}{\mathbf{v}_{\text{s}} - \mathbf{v}}\right) \mathbf{f}_{\text{T}}$$

for
$$f_R = f_{min}$$

$$\mathbf{f}_{\min} = \left(\frac{\mathbf{v}_{s} - \mathbf{v}}{\mathbf{v}_{s} + \mathbf{v}}\right) \mathbf{f}_{\mathrm{T}}$$

$$\Delta f_{\text{max}} = f_{\text{max}} - f_{\text{min}} = \frac{4v_{\text{s}}v}{v_{\text{s}}^2 - v^2} f_{\text{T}}$$

$$v_s = 330 \text{m/s}; \ v = \sqrt{2gl(1 - \cos\theta_0)} = \sqrt{2 \times 10 \times 8 \times 0.1} = 4 \text{m/s}$$

$$\mathbf{v} << \mathbf{v}_{s} \Rightarrow \Delta \mathbf{f}_{max} = \frac{4\mathbf{v}}{\mathbf{v}_{s}} \mathbf{f}_{T} = \frac{4 \times 4}{330} \times 660 = 32 \text{Hz}$$

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in