JEE Adv. June 2023 Question Paper With Text Solution 04 June | Paper-2 # **CHEMISTRY** JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation JEE Adv. June 2023 | 04 June Paper-2 #### **SECTION 1 (Maximum Marks: 12)** - This section contains **FOUR (04)** questions. - Each question has FOUR options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer. - For each question, choose the option corresponding to the correct answer. - Answer to each question will be evaluated according to the following marking scheme: Full Marks: +3 If **ONLY** the correct option is chosen; Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks: -1 In all other cases. 1. The correct molecular orbital diagram for F2 molecule in the ground state is JEE Adv. June 2023 | 04 June Paper-2 Ans. C Sol. The correct molecular orbital diagram for F₂ molecule in the ground state is - $$\boldsymbol{F}_{2} - \sigma_{2s}^{2} < \sigma_{2s}^{*2} < \sigma_{2p}^{2} < \pi_{2p}^{2} = \pi_{2p}^{2} < \pi_{2p}^{*2} = \pi_{2p}^{*2}$$ - 2. Consider the following statements related to colloids. - (I) Lyophobic colloids are not formed by simple mixing of dispersed phase and dispersion medium. - (II) For emulsions, both the dispersed phase and the dispersion medium are liquid. - (III) Micelles are produced by dissolving a surfactant in any solvent at any temperature. - (IV) Tyndall effect can be observed from a colloidal solution with dispersed phase having the same refractive index as that of the dispersion medium. The option with the correct set of statements is #### **MATRIX JEE ACADEMY** JEE Adv. June 2023 | 04 June Paper-2 (A)(I) and (II) (B) (II) and (III) (C) (III) and (IV) (D) (II) and (IV) Ans. Sol. (i) Special methods are used to prepare lyophobic colloids (iii) Micelles are formed at a particular temperature known as kraft temperature Q (iv) Tyhdaal effect would be observed when difference in repactive index of dispession medium and dispessed phase is high In the following reactions, P, Q, R, and S are the major products. 3. (i) Mg, dry ether O_cH (ii) (i) Mg, dry ether (ii) CO₂, dry ether (iii) H₂O⁺ (iv) NaOH (i) Mg, dry ether (ii) CH₃CHO, then H₂O (iii) CrO₃ (i) ethanolic NaCN (ii) H₂/Ni (iii) CHCl₃/KOH, Δ (iv) LiAlH₄, then H₂O The correct statement about P, Q, R, and S is (A) P is a primary alcohol with four carbons. (B) Q undergoes Kolbe's electrolysis to give an eight-carbon product. (C) R has six carbons and it undergoes Cannizzaro reaction. (D) S is a primary amine with six carbons. В Ans. Sol. (i) Mg, dry ether (ii) CO₂, dry ether (iii) H₃O[⊕] O_cH (ii) (iv) NaOH $$\sum_{\substack{C - O^{\Theta} \text{Na}^{\oplus} \\ O}} (Q)$$ **MATRIX JEE ACADEMY** JEE Adv. June 2023 | 04 June Paper-2 $$(i) Mg, dry ether$$ $$(ii) CH3CHO, then H2O$$ $$(iii) CrO3$$ $$(i) ethanolic NaCN$$ $$(ii) H2/Ni$$ $$(iii) CHCl3/KOH, \Delta$$ $$(iv) LiAlH4 then H2O$$ $$(i) Mg, dry ether O CH2 (R) CH3 (R)$$ 4. A disaccharide X cannot be oxidised by bromine water. The acid hydrolysis of X leads to a laevorotatory solution. The disaccharide X is $$(A) \begin{picture}(60,0){\line(1,0){150}} \put(0,0){\line(1,0){150}} \pu$$ $$(B) \ HOH_2C \ H \ OH \ OH \ H \ OH$$ $$(C) \begin{picture}(200,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,$$ $$(D) \begin{picture}(200,10) \put(0,0){\line(1,0){150}} \put(0,0){\line(1,$$ Ans. A # **MATRIX JEE ACADEMY** Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Website: www.matrixedu.in; Email: smd@matrixacademy.co.in JEE Adv. June 2023 | 04 June Paper-2 Sol. Sucrose $\xrightarrow{H_3O^+}$ Glucose + Fructose (Specific rotation + 52.5°) - 92° (mixture of products is laevorotatory) Sucrose $\xrightarrow{Br_2+H_2O}$ No reaction $BCD \Rightarrow$ reducing sugars, will get oxidized by $Br_2 + H_2O$ #### **SECTION 2 (Maximum Marks: 12)** - This section contains **THREE** (03) questions. - Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct answer(s). - For each question, choose the option(s) corresponding to (all) the correct answer(s). - Answer to each question will be evaluated according to the following marking scheme: Full Marks: +4 **ONLY** if (all) the correct option(s) is(are) chosen; Partial Marks: +3 If all the four options are correct but **ONLY** three options are chosen; Partial Marks: +2 If three or more options are correct but **ONLY** two options are chosen, both of which are correct; Partial Marks: +1 If two or more options are correct but **ONLY** one option is chosen and it is a correct option; Zero Marks: 0 If unanswered; Negative Marks: -2 In all other cases. • For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks; choosing ONLY (A) and (B) will get +2 marks; choosing ONLY (A) and (D) will get +2marks; choosing ONLY (B) and (D) will get +2 marks; choosing ONLY (A) will get +1 mark; choosing ONLY (B) will get +1 mark; choosing ONLY (D) will get +1 mark; choosing no option(s) (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get –2 marks. #### MATRIX JEE ACADEMY JEE Adv. June 2023 | 04 June Paper-2 5. The complex(es), which can exhibit the type of isomerism shown by $[Pt(NH_3)_2Br_3]$, is(are) $[en = H_2NCH_2CH_2NH_2]$ - $(A) [Pt(en)(SCN)_2]$ - (B) $[Zn(NH_2)_2Cl_2]$ - (C) $[Pt(NH_3),Cl_4]$ - (D) $[Cr(en)_2(H,O)(SO_4)]^+$ Ans. CD Sol. [Pt(NH₃)₂Br₂] can exhibit geometrical isomeris Cis-Isomer Trans-Isomer (C) [Pt(NH₃)₂Cl₄] Cis-Isomer Trans-Isomer (D) $[Cr(en)_2(H_2O)(SO_4)]^+$ 6. Atoms of metals x, y, and z form face-centred cubic (fcc) unit cell of edge length L_x , body-centred cubic (bcc) unit cell of edge length L_y , and simple cubic unit cell of edge length L_y , respectively. If $$r_z = \frac{\sqrt{3}}{2} r_y$$; $r_y = \frac{8}{\sqrt{3}} r_x$; $M_z = \frac{3}{2} M_y$ and $M_z = n 3 M_x$, then the correct statement(s) is (are) [Given: M_x , M_y , and M_z are molar masses of metals x, y, and z, respectively. r_x , r_y , and r_z are atomic radii of metals x, y, and z, respectively.] - (\hat{A}) Packing efficiency of unit cell of x > Packing efficiency of unit cell of y > Packing efficiency of unit cell of z > - (B) $L_y > L_z$ - $(C) L_x > L_y$ - (D) Density of x > Density of y Ans. ABD ### **MATRIX JEE ACADEMY** JEE Adv. June 2023 | 04 June Paper-2 Sol. Fcc L \mathbf{X} $$\mathbf{r}_{\mathrm{Z}} = \frac{\sqrt{3}}{2} \, \mathbf{r}_{\mathrm{y}}$$ $$r_y = \frac{8}{\sqrt{3}} r_x$$ $$\sqrt{2} L_{x} = 4r_{x}$$ $L_{x} = \frac{4r_{x}}{\sqrt{2}}$ $$M_{z} = \frac{3}{2} M_{y}$$ $$\sqrt{3} L_y = 4r_y$$ $L_y = \frac{4}{\sqrt{3}} \frac{8}{\sqrt{3}} r_x$ $M_z = 3M_x$ $$M_z = 3M_x$$ $$L_z = 2r_z$$ $$L_z = 2r_z$$ $L_z = \frac{2\sqrt{3}}{2} \frac{8}{\sqrt{3}} r_x$ Hence $L_v > L_z > L_x$ $$d_{x} = \frac{4 \times M_{x}}{N_{A} \times (L_{x})^{3}} = \frac{4M_{y}}{2N_{A} \left(\frac{4}{\sqrt{2}} r_{x}\right)^{3}}$$ $$d_{y} = \frac{2 \times M_{y}}{N_{A} \times (L_{y})^{3}} = \frac{2M_{y}}{N_{A} \left(\frac{32}{3}r_{x}\right)^{3}}$$ Hence $d_{v} > d_{v}$ 7. In the following reactions, P, Q, R, and S are the major products. $$\underbrace{\frac{(i) \, KMnO_4, \, KOH, \, \Delta}{(ii) \, H_3O^{\oplus}}}_{} P$$ $$\begin{array}{c} \text{MeOOC} \\ \hline \\ \hline \\ (ii) \text{ NaOH, H}_2O \\ \hline \\ (ii) \text{ H}_3O^{\oplus} \end{array} \hspace{-0.5cm} Q$$ COOMe $$(i) H_3O^{\oplus}, \Delta$$ $$(ii) H_2CrO_4$$ $$R$$ # **MATRIX JEE ACADEMY** JEE Adv. June 2023 | 04 June Paper-2 The correct statement(s) about P, Q, R, and S is(are) - (A) P and Q are monomers of polymers dacron and glyptal, respectively. - (B) P, Q, and R are dicarboxylic acids. - (C) Compounds Q and R are the same. - (D) R does not undergo aldol condensation and S does not undergo Cannizzaro reaction. Ans. CD Sol. $$\begin{array}{c|c} & & & \\ \hline & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$ #### **MATRIX JEE ACADEMY** COOH # **Question Paper With Text Solution (Chemistry)** JEE Adv. June 2023 | 04 June Paper-2 #### **SECTION 3 (Maximum Marks: 24)** - This section contains SIX (06) questions. - The answer to each question is a **NON-NEGATIVE INTEGER**. - For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. - Answer to each question will be evaluated <u>according to the following marking scheme</u>: **CHO** Full Marks: +4 If **ONLY** the correct integer is entered; Zero Marks: 0 In all other cases. 8. H_2S (5 moles) reacts completely with acidified aqueous potassium permanganate solution. In this reaction, the number of moles of water produced is x, and the number of moles of electrons involved is y. The value of (x + y) is Sol. $$5H_2S + 2KMnO_4 + 3H_2SO_4 \rightarrow 5S + 2MnSO_4 + K_2SO_4 + 8H_2O$$ $x = 8$ $y = 10$ $x + y = 18$ Ans. 9. Among $[I_3]^+$, $[SiO_4]^{4-}$, SO_2Cl_2 , XeF_2 , SF_4 , ClF_3 , $Ni(CO)_4$, XeO_2F_2 , $[PtCl_4]^{2-}$, XeF_4 , and $SOCl_2$, the total number of species having sp3 hybridised central atom is ______. Ans. 5 Sol. Hybridization of central atom I_{3}^{+} sp³ sp³ SiO₄⁴⁻ sp³ SO₂Cl₂ sp³ XeF₂ sp³d SF₄ sp³d ClF₃ sp³d Ni(Co)₄ sp³ #### **MATRIX JEE ACADEMY** # **Question Paper With Text Solution (Chemistry)** JEE Adv. June 2023 | 04 June Paper-2 $\begin{array}{ccc} \text{XeO}_2\text{F}_2 & \text{sp}^3\text{d} \\ \text{[PtCl}_4\text{]} & \text{dsp}^2 \\ \text{XeF}_4 & \text{sp}^3\text{d}^2 \\ \text{SOCl}_2 & \text{sp}^3 \end{array}$ 10. Consider the following molecules: Br_3O_8 , F_2O , $H_2S_4O_6$, $H_2S_5O_6$, and C_3O_2 . Count the number of atoms existing in their zero oxidation state in each molecule. Their sum is _____. Ans. 6 Sol. $O = Br^{+6} - Br^{+4} - Br^{+4} - Br^{+6} = O$ $O = Br^{-6} - Br^{+4} - Br^{+6} = O$ $O = F^{-1} - O^{+2}$ $F^{-1} - O^{+2}$ HO $$\stackrel{\text{O}}{\overset{\text{II}}{\text{O}}}_{\text{O}}^{\text{II}} - S^{0} - S^{0} - S^{0} - \stackrel{\text{O}}{\overset{\text{II}}{\text{O}}}_{\text{O}}^{\text{II}}$$ OH $$2 + 1 + 3 = 6$$ Ans. 11. For He⁺, a transition takes place from the orbit of radius 105.8 pm to the orbit of radius 26.45 pm. The wavelength (in nm) of the emitted photon during the transition is ____. [Use: Bohr radius, a = 52.9 pm Rydberg constant, $R_H = 2.2 \times 10^{-18} J$ Planck's constant, $h = 6.6 \times 10^{-34} \,\text{J s}$ Speed of light, $c = 3 \times 10^8 \, \text{ms}^{-1}$] Ans. 30 Sol. $105.8 \times 10^{-12} = 52.9 \times 10^{-2} \frac{n^2}{2}$ $$26.45 \times 10^{-12} = 52.9 \times 10^{-2} \frac{n^2}{2}$$ $$n = 1$$ $$\frac{1}{\pi} = R \qquad Z^2 \left[\frac{1}{1} - \frac{1}{4} \right]$$ $$\frac{1}{\pi} = \frac{R_{\rm H}}{h_{\rm C}} z^2 \left[\frac{1}{1} - \frac{1}{4} \right]$$ # MATRIX JEE ACADEMY JEE Adv. June 2023 | 04 June Paper-2 $$\frac{1}{\pi} = \frac{2.2 \times 10^{-18} \times 4}{6.6 \times 10^{-34} \times 3 \times 10^{8}} \times \frac{3}{4} = \frac{1}{\pi} = \frac{10^{8}}{3}$$ $$\pi = 3 \times 10^{-8} \text{m}$$ $$\pi = 30 \times 10^{-9}$$ $= \pi = 30 \text{ nm}$ 12. $50 \text{ mL of } 0.2 \text{ molal urea solution (density} = 1.012 \text{ g mL}^{-1} \text{ at } 300 \text{ K})$ is mixed with 250 mL of a solution containing 0.06 g of urea. Both the solutions were prepared in the same solvent. The osmotic pressure (in Torr) of the resulting solution at 300 K is [Use: Molar mass of urea = 60 g mol⁻¹; gas constant, $R = 62 L Torr K^{-1} mol^{-1}$; Assume, $\Delta_{mix} H = 0$, $\Delta_{mix} V = 0$] Ans. 682 Sol. 50mL 0.2 molal urea d = 1.012 gm/mL; 250mL 0.06 gm urea mass of urea solution = density × volume = $1.012 \times 50 = 50.6$ gm $$0.2 = \frac{x}{(50.6 - x \times 60)} \times 1000$$ $$10.12 - 12x = 1000x$$ $$1012x = 10.12$$ $$x = 0.01$$ mole mass of urea = $0.01 \times 60 = 0.6$ gm $$\pi = \left(\frac{0.01 + \frac{0.06}{60}}{300} \times 1000\right) RT$$ $$\pi = \frac{11}{300} \times 62 \times 300$$ =682 torr 13. The reaction of 4-methyloct-1-ene (P, 2.52 g) with HBr in the presence of $(C_6H_5CO)_2O_2$ gives two isomeric bromides in a 9 : 1 ratio, with a combined yield of 50%. Of these, the entire amount of the primary alkyl bromide was reacted with an appropriate amount of diethylamine followed by treatment with aq. K_2CO_3 to give a non-ionic product S in 100% yield. The mass (in mg) of S obtained is [Use molar mass (in g mol $^{-1}$): H = 1, C = 12, N = 14, Br = 80] Ans. 1791 Sol. $H_3C-CH_2-CH_2-CH_2-CH-CH_2-CH=CH_2$ $\xrightarrow{HBr/Peroxide}$ CH_3 $2.52\,\mathrm{gram}$ $$\frac{2.52}{126} = 2 \times 10^{-2} \, \text{mole}$$ # MATRIX JEE ACADEMY # **Question Paper With Text Solution (Chemistry)** JEE Adv. June 2023 | 04 June Paper-2 $$\rightarrow 2 \times 10^{-2} \times \frac{50}{100}$$ Anti MK + $$10^{-2} \text{ mole} \times \frac{9}{10} = 9 \times 10^{-3} \text{ mole}$$ yeild 50% $$10^{-2} \times \frac{1}{10}$$ $$10^{-3} \text{ mole}$$ A (primary alkyl bromide) $$\frac{\text{NH}}{\text{K}_2\text{CO}_3}$$ yeild $\rightarrow 100\%$ 1 mole — 1 mole 9×10^{-3} mole 9×10^{-3} mole mass = $199 \times 9 \times 10^{-3}$ gram = 1791 mg #### **SECTION 4 (Maximum Marks: 12)** - This section contains **TWO (02)** paragraphs. - Based on each paragraph, there are **TWO (02)** questions. - The answer to each question is a NUMERICAL VALUE. - For each question, enter the correct numerical value of the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer. - If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places. - Answer to each question will be evaluated according to the following marking scheme: Full Marks: +3 If ONLY the correct numerical value is entered in the designated place; Zero Marks: 0 In all other cases. #### **MATRIX JEE ACADEMY** JEE Adv. June 2023 | 04 June Paper-2 #### PARAGRAPH I The entropy versus temperature plot for phases α and β at 1 bar pressure is given. S_T and S_O are entropies of the phases at temperatures T and 0 K, respectively. The transition temperature for α to β phase change is 600 K and $C_{P,\beta}-C_{P,\alpha}=1$ J mol $^{-1}$ K $^{-1}$. Assume ($C_{P,\beta}-C_{P,\alpha}$) is independent of temperature in the range of 200 to 700 K. $C_{P,\alpha}$ and $C_{P,\beta}$ are heat capacities of α and β phases, respectively. 14. The value of entropy change, S_{β} - S_{α} (in J mol⁻¹ K⁻¹), at 300 K is ____. [Use: $\ln 2 = 0.69$ Given: $S_{\beta} - S_{\alpha} = 0$ at 0 K] Ans. 0.31 15. The value of enthalpy change, $H_{\beta} - H_{\alpha}$ (in J mol⁻¹), at 300 K is ____. Ans. 300 Sol. $\alpha \Longrightarrow \beta$ $(S_{600} - S_0)_{\alpha} = 5$ $(S_{600} - S_0)_{\beta} = 6$ ## **Question Paper With Text Solution (Chemistry)** JEE Adv. June 2023 | 04 June Paper-2 14. $$\begin{array}{c} \Delta S = ?; \Delta H = ? \\ (300) & \beta \\ (300) & \Delta S_{1} \\ \Delta S_{3} = \Delta S_{4} + 0 + \Delta S_{5} \\ \alpha (600) & -5 + 6 = 1 \end{array}$$ $$\begin{array}{c} \Delta S_{2} \\ \beta (600) \\ \Delta S_{4} \\ \alpha \\ (0) & \Delta S = 0 \text{ (given)} \end{array}$$ $$\begin{array}{c} \beta \\ \beta (600) \\ 0 \end{array}$$ $$\Delta S = \Delta S_1 + \Delta S_2 + \Delta S_3$$ $$\Rightarrow C_{p,\alpha} \ln \frac{600}{300} + 1 + C_{p,\beta} \ln \frac{300}{600}$$ $$\Rightarrow (C_p.\beta - C_p.\alpha) \ln \frac{300}{600} + 1$$ $$\Rightarrow (1 \times \ln 1/2) + 1$$ $$= 0.31$$ 15. $$\Delta H = C_{p,\alpha} (600 - 300) + (600 \times 1) + C_{p,\beta} (300 - 600)$$ $$= -1 \times 300 + 600 = 300$$ #### "PARAGRAPH II" A trinitro compound, 1,3,5-tris-(4-nitrophenyl)benzene, on complete reaction with an excess of Sn/HCl gives a major product, which on treatment with an excess of NaNO₂/HCl at 0 °C provides P as the product. P, upon treatment with excess of H₂O at room temperature, gives the product Q. Bromination of Q in aqueous medium furnishes the product R. The compound P upon treatment with an excess of phenol under basic conditions gives the product S. The molar mass difference between compounds Q and R is 474 g mol^{-1} and between compounds P and S is 172.5 g mol^{-1} . - 16. The number of heteroatoms present in one molecule of R is _____. [Use: Molar mass (in g mol-1): H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5 Atoms other than C and H are considered as heteroatoms] - Ans. 9 - 17. The total number of carbon atoms and heteroatoms present in one molecule of S is ______. [Use: Molar mass (in g mol-1): H = 1, C = 12, N = 14, O = 16, Br = 80, Cl = 35.5 Atoms other than C and H are considered as heteroatoms] Ans. 51 #### **MATRIX JEE ACADEMY** JEE Adv. June 2023 | 04 June Paper-2 Sol. ## **MATRIX JEE ACADEMY**