JEE Adv. June 2023 Question Paper With Text Solution 04 June | Paper-1

PHYSICS

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

SECTION 1 (Maximum Marks: 12)

- This section contains **THREE** (03) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONE OR MORE THAN ONE** of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks: +4 **ONLY** if (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but **ONLY** three options are chosen;

Partial Marks : +2 If three or more options are correct but **ONLY** two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but **ONLY** one option is chosen and it is a

correct option;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the **ONLY** three options corresponding to correct answers,

then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option (i.e. the question is unanswered) will get 0 marks; and

choosing any other combination of options will get -2 marks.

1. A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height 3h from the ground, as shown in the figure. Aspherical ball of mass m is released on the slide from rest at a height h from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0 = u_0 \hat{x}$ and falls on

MATRIX JEE ACADEMY

JEE Adv. June 2023 | 04 June Paper-1

the ground at a distance d from the building making an angle θ with the horizontal. It bounces off with a velocity \vec{v} and reaches a maximum height h_1 . The acceleration due to gravity is g and the coefficient of restitution of the ground is $1\sqrt{3}$. Which of the following statement(s) is(are) correct?

(A)
$$\vec{\mathbf{u}}_0 = \sqrt{2g\mathbf{h}}\hat{\mathbf{x}}$$

(B)
$$\vec{v} = \sqrt{2gh} (\hat{x} - \hat{z})$$

(C)
$$\theta = 60^{\circ}$$

(D)
$$d/h_1 = 2\sqrt{3}$$

Ans. ACD

Sol.

For A to B: $\omega_{net} = \Delta K$

$$\Rightarrow$$
 mgh = $\frac{1}{2}$ mu₀²

$$\Rightarrow \mathbf{u}_0 = \sqrt{2g\mathbf{h}}$$
 (i)

For B to C:

time of flight (T) =
$$\sqrt{\frac{2 \times 3h}{g}} = \sqrt{\frac{6h}{g}}$$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

$$d = u_0 \times \sqrt{\frac{6h}{g}}$$

$$d = \sqrt{2gh} \sqrt{\frac{6h}{g}} = \sqrt{12}h$$

$$d = 2\sqrt{3}h$$

At C:

$$u_x = u_0 = \sqrt{2gh}$$

$$\&v_{z}^{2} = 0 + 2 \times g \times 3h$$

$$v_z = \sqrt{6gh}$$

$$\tan \theta = \frac{v_z}{u_x} = \frac{\sqrt{6gh}}{\sqrt{2gh}}$$

$$\tan \theta = \sqrt{3}$$

$$\theta = 60^{\circ}$$

At C:

In vertical direction

$$v_z^1 = ev_z = \frac{1}{\sqrt{3}}\sqrt{6gh}$$

$$v_z^1 = \sqrt{2gh} \implies h_1 = \frac{\left(v_z^1\right)^2}{2g} = h \implies \frac{d}{h_1} = \frac{d}{h} = 2\sqrt{3}$$

So velocity after collision

$$\vec{v} = \sqrt{2gh}(\hat{i}) + \sqrt{2gh}(\hat{k})$$

A plane polarized blue light ray is incident on a prism such that there is no reflection from the surface of the prism. The angle of deviation of the emergent ray is $\delta = 60^{\circ}$ (see Figure-1). The angle of minimum deviation for red light from the same prism is $\delta_{min} = 30^{\circ}$ (see Figure-2). The refractive index of the prism material for blue light is $\sqrt{3}$. Which of the following statement(s) is(are) correct?

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

- (A) The blue light is polarized in the plane of incidence.
- (B) The angle of the prism is 45°.
- (C) The refractive index of the material of the prism for red light is $\sqrt{2}$.
- (D) The angle of refraction for blue light in air at the exit plane of the prism is 60°.

Ans. ACD

Sol.
$$\delta_{\text{blue}} = 60^{\circ}$$
 $\left(\delta_{\text{min}}\right)_{\text{red}} = 30^{\circ}$

for blue angle of incidence = Brewster's angle

$$tan i = tan \theta_{\rm B} = \sqrt{3}$$

Now

$$1 \times \sin 60^{\circ} = \sqrt{3} \times \sin r_{1}$$

$$\Rightarrow \sin r_1 = \frac{1}{2}$$

$$r_1 = 30^{\circ}$$

also
$$\delta = 60^{\circ} = 60^{\circ} + e - A$$

$$\Rightarrow \boxed{e = A}$$

also
$$r_2 = A - r_1 = A - 30^{\circ}$$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

&
$$\sqrt{3} \times \sin r_2 = 1 \times \sin e$$

$$\Rightarrow \sqrt{3}\sin(A-30^\circ) = \sin A$$

$$\Rightarrow \sqrt{3} \times \left[\sin A \cos 30^{\circ} - \cos A \sin 30^{\circ} \right] = \sin A$$

$$\Rightarrow \sqrt{3} \times \frac{\sqrt{3}}{2} \sin A = \sqrt{3} \cos A \times \frac{1}{2} + \sin A$$

$$\Rightarrow \frac{\sin A}{2} = \frac{\sqrt{3}\cos A}{2}$$

$$\Rightarrow$$
 tan A = $\sqrt{3}$

$$A = 60^{\circ}$$
 & $e = 60^{\circ}$

3. In a circuit shown in the figure, the capacitor C is initially uncharged and the key K is open. In this condition, a current of 1 A flows through the 1 Ω resistor. The key is closed at time $t = t_0$. Which of the following statement(s) is(are) correct?

[Given:
$$e^{-1} = 0.36$$
]

- (A) The value of the resistance R is 3Ω .
- (B) For $t < t_0$, the value of current I_1 is 2 A.
- (C) At $t = t_0 + 7.2 \mu s$, the current in the capacitor is 0.6 A.
- (D) For $t \rightarrow \infty$, the charge on the capacitor is 12 μ C.

Ans. ABCD

Sol. at t = 0:

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

$$I_2 = 1A$$

$$\frac{x-5}{1} = 1$$

$$x = 6V$$

$$I_1 = \frac{6-0}{3} = 2A$$
 & $I = I_1 + I_2$

$$I = I_1 + I_2$$

$$I = 2 + 1$$

$$I = 3A$$

So
$$\frac{15-6}{R} = I = 3$$

$$45 \times \frac{400}{1000} \, W$$

At
$$t = \infty$$
:

P.D. across AB = $I_1 \times 3 = 2 \times 3 = 6$ V charge on capacitor = $6 \times 2 = 12\mu c$

At any time 't':

MATRIX JEE ACADEMY

JEE Adv. June 2023 | 04 June Paper-1

$$E_{eq} = \frac{\frac{15}{3} + \frac{5}{1}}{\frac{1}{3} + \frac{1}{1}} = \frac{5+5}{\left(\frac{4}{3}\right)} = \frac{30}{4} = \frac{15}{2}V$$

$$r_{\rm eq} = \frac{3 \times 1}{3+1} = \frac{3}{4}\Omega$$

Using thevenin method

$$R_{eq} = \frac{\frac{3}{4} \times 3}{\frac{3}{4} + 3} + 3$$

$$R_{eq} = \frac{\frac{9}{4}}{\left(\frac{15}{4}\right)} + 3$$

$$R_{eq} = \frac{3}{5} + 3$$

$$R_{eq} = \frac{18}{5}\Omega$$

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

$$I = \frac{\frac{15}{2}}{\left(3 + \frac{3}{4}\right)}$$

$$I = \frac{\left(\frac{15}{2}\right)}{\left(\frac{15}{4}\right)}$$

$$I = 2A$$

$$V_A - V_B = 3 \times 2 = 6V$$

$$Q = Q_0 \left[1 - e^{-t/RC} \right]$$

$$I = \frac{dQ}{dt} = Q_0 \left[e^{-t/RC} \right] \left[\frac{1}{RC} \right]$$

$$I = \frac{Q_0}{RC} e^{-t/RC}$$

(at
$$t = t_0 + 7.2 \mu s$$
)

$$I = \frac{12}{\left(\frac{18}{5}\right) \times 2} e^{\frac{-7.2}{\frac{18}{5} \times 2}}$$

$$I = \frac{5}{3} e^{-\frac{72}{36} \times \frac{5}{10}}$$

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

$$I = \frac{5}{3} \times e^{-1}$$

$$I = \frac{5}{3} \times 0.36 = I = 5 \times 0.12$$

$$I = 0.60A$$

SECTION 2 (Maximum Marks: 12)

• This section contains **FOUR (04)** questions.

• Each question has **FOUR** options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.

• For each question, choose the option corresponding to the correct answer.

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If **ONLY** the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

4. A bar of mass M = 1.00 kg and length L = 0.20 m is lying on a horizontal frictionless surface. One end of the bar is pivoted at a point about which it is free to rotate. A small mass m = 0.10 kg is moving on the same horizontal surface with $5.00 \text{ m} \text{ s}^{-1}$ speed on a path perpendicular to the bar. It hits the bar at a distance L/2 from the pivoted end and returns back on the same path with speed v. After this elastic collision, the bar rotates with an angular velocity ω . Which of the following statement is correct?

(A)
$$\omega = 6.98 \text{ rad s}^{-1} \text{ and } v = 4.30 \text{ m s}^{-1}$$

(B)
$$\omega = 3.75 \text{ rad}^{s-1} \text{ and } v = 4.30 \text{ m s}^{-1}$$

(C)
$$\omega = 3.75 \text{ rad s}^{-1} \text{ and } v = 10.0 \text{ m s}^{-1}$$

(D)
$$\omega = 6.80 \text{ rad s}^{-1} \text{ and } v = 4.10 \text{ m s}^{-1}$$

Ans. A

Sol.

for system \rightarrow Angular momentum is conserved about A

MATRIX JEE ACADEMY

JEE Adv. June 2023 | 04 June Paper-1

$$L_i = L_f$$

$$\Rightarrow \left(0.1 \times 5 \times \frac{0.2}{2}\right) = -\left(0.1 \times v \times \frac{0.2}{2}\right) + \frac{1 \times (0.2)^2}{3} \times \omega$$

$$\Rightarrow \frac{5}{2} = \frac{-v}{2} + \frac{2\omega}{3}$$

$$\Rightarrow \boxed{4\omega - 3v = 15} \qquad \dots (1)$$

and
$$e = 1 = \frac{\omega \times \frac{0.2}{2} + v}{5}$$

$$v + \frac{\omega}{10} = 5$$

$$\Rightarrow \boxed{10v + \omega = 50} \qquad \dots (2)$$

from (1) & (2)

$$40v + 3v = 200 - 15$$

$$\Rightarrow 43v = 185$$

$$v = \frac{185}{43} \Rightarrow v = 4.302 \text{ m/sec}$$

&
$$\omega = 50 - 10 \times 4.302$$

$$\omega = 50 - 43.02$$

$$\omega = 6.98 \, \text{rad} / \text{sec}$$

- A container has a base of $50 \text{ cm} \times 5 \text{ cm}$ and height 50 cm, as shown in the figure. It has two parallel electrically conducting walls each of area $50 \text{ cm} \times 50 \text{ cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant 3 at a uniform rate of $250 \text{ cm} 3 \text{ s}^{-1}$. What is the value of the capacitance of the container after 10 seconds?
 - [Given: Permittivity of free space $\in_0 = 9 \times 10^{-12} \, \text{C}^2 \text{N}^{-1} \text{m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. June 2023 | 04 June Paper-1

(A) 27 pF

(B) 63 pF

(C) 81 pF

(D) 135 pF

Ans. B

 \mathbf{x} C_1 C_2

Sol.

in 10 sec

Total volume of dielectric

$$= 250 \times 10$$

$$= 2500 \text{ cm}^3$$

So
$$50 \times 5 \times x = 2500$$

$$x = \frac{2500}{250}$$

$$x = 10 \text{ cm}$$

$$C_1 = \frac{\epsilon_0 \times A_1}{d}$$

$$C_2 = \frac{\in_r \in_0 \times A_2}{d}$$

$$C_{eq} = C_1 + C_2$$

$$= \frac{\epsilon_0}{d} [A_1 + \epsilon_r A_2]$$

$$= \frac{9 \times 10^{-12}}{5 \times 10^{-2}} \left[40 \times 50 + 3 \times 10 \times 50 \right] \times 10^{-4}$$

$$=\frac{9}{5}\times10^{-14}\left[2000+1500\right]$$

$$\frac{9}{5} \times 35 \times 10^{-12}$$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

$$=63\times10^{-12} \,\mathrm{F}$$

= 63pF

6. One mole of an ideal gas expands adiabatically from w an initial state (T_A, V_0) to final state $(T_B, 5V_0)$. Another mole of the same gas expands isothermally from a different initial state $(T_{\rm p}, T_{\rm o})$ to the same final state $(T_{\rm p}, 5V_{\rm o})$. The ratio of the specific heats at constant pressure and constant volume of this ideal gas is γ . What is the ratio

 $T_{\Delta}/T_{\rm B}$?

(A) $5^{\gamma-1}$

(B) $5^{1-\gamma}$

(C) 5^{γ}

(D) $5^{1+\gamma}$

Α Ans.

A diabatic process: $T_{_{\!A}}V_{_{\!0}}^{\gamma-l}=T_{_{\!f}}(5V_{_{\!0}})^{\gamma-l}$ Sol. Isothermal process: $T_{\rm B} = T_{\rm f}$ $(1) \div (2)$

 $\frac{T_{A}}{T_{B}}V_{0}^{\gamma-1} = (5V_{0})^{\gamma-1}$

 $\frac{T_A}{T_B} = 5^{\gamma - 1}$

Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and 7. Q from the Earth surface are h_p and h_Q , respectively, where $h_p = R/3$. The accelerations of P and Q due to Earth's gravity are g_p and g_Q , respectively. If $g_p/g_Q = 36/25$, what is the value of h_Q ?

(A) 3R/5

(B) R/6

(C) 6R/5

(D) 5R/6

Ans.

Satellite P: $h_p = \frac{R}{3}$ & radius of orbit $(r_p) = \frac{R+R}{3} = \frac{4R}{3}$ Sol.

Satellite Q: h_0 & radius of orbit = r_0

$$\frac{g_{\rm P}}{g_{\rm Q}} = \frac{\frac{GM_e}{r_{\rm P}^2}}{GM_e}$$

$$\frac{36}{25} = \frac{r_Q^2}{r_P^2}$$

$$\frac{r_{Q}}{r_{P}} = \frac{6}{5}$$

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

$$r_{Q} = \frac{6}{5} \times r_{P} = \frac{6}{5} \times \frac{4R}{3} = \frac{8R}{5}$$

$$h_Q = \frac{8R}{5} - R = \frac{3R}{5}$$

SECTION 3 (Maximum Marks: 24)

- This section contains **SIX (06)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If **ONLY** the correct integer is entered;

Zero Marks : 0 In all other cases.

8. A Hydrogen-like atom has atomic number Z. Photons emitted in the electronic transitions from level n = 4 to level n = 3 in these atoms are used to perform photoelectric effect experiment on a target metal. The maximum kinetic energy of the photoelectrons generated is 1. 95 eV. If the photoelectric threshold wavelength for the target metal is 310 nm, the value of Z is ______.

[Given: hc = 1240 eV-nm and Rhc = 13.6 eV, where R is the Rydberg constant, h is the Planck's constant and c is the speed of light in vacuum]

Ans. 3

Sol. In photoelectric effect: $E_{ph} - \phi = K_{max}$

$$13.6 \times \mathbb{Z}^2 \left(\frac{1}{3^3} - \frac{1}{4^2} \right) - \frac{hc}{\lambda_{th}} = 1.95$$

$$13.6 \ Z^2 \times \frac{7}{144} - \frac{1240}{310} = 1.95$$

$$Z^2 \times = \frac{5.95 \times 144}{13.6 \times 7} = 9$$

$$\mathbb{Z}^2 = 3$$

9. An optical arrangement consists of two concave mirrors M_1 and M_2 , and a convex lens L with a common principal axis, as shown in the figure. The focal length of L is 10 cm. The radii of curvature of M_1 and M_2 are 20 cm and 24 cm, respectively. The distance between L and M_2 is 20 cm. A point object S is placed at the mid-

MATRIX JEE ACADEMY

JEE Adv. June 2023 | 04 June Paper-1

point between L and M_2 on the axis. When the distance between L and M_1 is n/7 cm, one of the images coincides with S. The value of n is _____.

Ans. 80 or 150 or 220

Sol.

For I:

- 1. Image formed by lens is at ∞
- 2. Image formed by M_1 is at its focus i.e. 10 cm to the right of its pole.
- 3. Image formed by lens now cannot be at S because for that rays need to be incident parallel to PA. For II:
- 1. Image formed by M,

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f_2}$$

$$v = \frac{uf_2}{u - f_2} = \frac{(-10)(-12)}{2} = 60 \text{ cm}$$

(to the right of pole of M₂)

2. Image formed by lens

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

$$v = \frac{uf}{u+f} = \frac{(-80)(10)}{-70} = \frac{80}{7}$$

(to the left of lens)

3. If the rays coming from lens are incident on pole of M₁, then they will reflect symmetrically on a mirrored path about PA and after refraction from lens L refraction from mirror M₂, they will converge at S finally. So,

$$\frac{80}{7} = \frac{n}{7}$$

$$n = 80$$

4. If the rays coming from lens converge onto centre of curvature of M₁, then they will retrace their path and eventually converge at S.

$$\frac{80}{7} + 20 = \frac{n}{7} \qquad \Rightarrow n = 220$$

5. If the rays coming from lens converge onto focus of M₁, then they will become parallel to principle axis after reflection from M₁ and finally get converged at S because S lies at the focus of lens.

$$\frac{80}{7} + 10 = \frac{n}{7} \qquad \Rightarrow n = 150$$

- 10. In an experiment for determination of the focal length of a thin convex lens, the distance of the object from the lens is 10 ± 0.1 cm and the distance of its real image from the lens is 20 ± 0.2 cm. The error in the determination of focal length of the lens is n %. The value of n is
- Ans.

Sol.
$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \qquad \Rightarrow \frac{1}{f} = \frac{1}{20} - \frac{1}{(-10)} \Rightarrow f = \frac{20}{3}$$

$$\frac{\Delta f}{f^2} = \frac{\Delta v}{v^2} + \frac{\Delta v}{u^2}$$

$$\left(\frac{\Delta f}{f}\right) \times \frac{1}{f} = \frac{0.2}{202} + \frac{0.1}{10^2}$$

$$\frac{\Delta f}{f} = \left(\frac{0.2}{400} + \frac{0.1}{100}\right) \times \frac{20}{3}$$

$$\frac{\Delta f}{f} = \frac{0.6}{400} \times \frac{20}{3}$$

$$\frac{\Delta f}{f} \times 100 = \frac{4}{400} \times 100 = 1\%$$

11. A closed container contains a homogeneous mixture of two moles of an ideal monatomic gas ($\gamma = 5/3$) and one mole of an ideal diatomic gas ($\gamma = 7/5$). Here, γ is the ratio of the specific heats at constant pressure and constant volume of an ideal gas. The gas mixture does a work of 66 Joule when heated at constant pressure.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. June 2023 | 04 June Paper-1

The change in its internal energy is Joule.

Ans. 121

Sol.
$$f_{eq} = \frac{n_1 f_1 + n_2 f_2}{n_1 + n_2} = \frac{2 \times 3 + 1 \times 5}{3} = \frac{11}{3}$$

WD at constant pressure = $P\Delta V$ or $nR\Delta T = 66 J$

$$\Delta U = \frac{f_{eq} nR\Delta T}{2} = \frac{11}{3 \times 2} \times 66 = 121J$$

- 12. A person of height 1.6 m is walking away from a lamp post of height 4 m along a straight path on the flat ground. The lamp post and the person are always perpendicular to the ground. If the speed of the person is 60 cm s^{-1} , the speed of the tip of the person's shadow on the ground with respect to the person is _____ cm s⁻¹.
- Ans. 40

Sol.

$$\mathbf{v}_{\mathrm{A}} - \mathbf{v}_{\mathrm{P}} = ?$$

$$\frac{4}{x+y} = \frac{1.6}{y}$$

$$4y = 1.6 x + 1.6 y$$

$$2.4 y = 1.6 x$$

$$y = \frac{2}{3}x$$

$$\frac{dy}{dt} = \frac{2}{3} \frac{dx}{dt}$$

$$v_A - v_P = \frac{2}{3} \times 60 \text{ cm/s} = 40 \text{ cm/s}$$

13. Two point-like objects of masses 20 gm and 30 gm are fixed at the two ends of a rigid massless rod of length 10 cm. This system is suspended vertically from a rigid ceiling using a thin wire attached to its center of mass,

MATRIX JEE ACADEMY

JEE Adv. June 2023 | 04 June Paper-1

as shown in the figure. The resulting torsional pendulum undergoes small oscillations. The torsional constant of the wire is 1.2×10^{-8} N m rad $^{-1}$. The angular frequency of the oscillations in n \times 10 $^{-3}$ rad s $^{-1}$. The value of n is

Ans. 10

Sol.
$$\omega = \sqrt{\frac{C}{I}}$$

$$I = \frac{m_1 m_2 r^2}{m_1 + m_2} = \frac{20 \times 10^{-3} \times 30 \times 10^{-3} \times 10^{-2}}{20 \times 10^{-3} + 30 \times 10^{-3}}$$

$$\omega = \sqrt{\frac{1.2 \times 10^{-8}}{600 \times 10^{-5}}} = \sqrt{\frac{6 \times 10^{-8}}{6 \times 10^{-4}}} = 10^{-2} = 10 \times 10^{-3} \text{ rad/s}$$

SECTION 4 (Maximum Marks: 12)

- This section contains **FOUR (04)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: **List-I** and **List-II**.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +3 ONLY if the option corresponding to the correct combination is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

14. List-I shows different radioactive decay processes and List-II provides possible emitted particles. Match each entry in List-I with an appropriate entry from List-II, and choose the correct option.

(P)
$$_{92}^{238}$$
 U \rightarrow_{31}^{234} Pa

$$(Q)_{82}^{214} Pb \rightarrow_{82}^{210} Pb$$

(R)
$$_{81}^{210}$$
 T $l \rightarrow_{82}^{206}$ Pb

(S)
$$_{91}^{228}$$
 Pa \rightarrow_{88}^{224} Ra

(A)
$$P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 1$$

(C)
$$P \rightarrow 5, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 4$$

Ans. A

Sol. (P)
$$_{92}^{238}$$
U \rightarrow_{91}^{234} P_a + X_2^4 He + y_{-1}^0 e

By mass:

$$238 = 234 + 4x$$

$$\Rightarrow$$
 x = 1

By charge:

$$92 = 91 + 2x - y$$

$$\Rightarrow$$
 y = 1

$$\therefore P \rightarrow option(4)$$

(Q)
$$_{82}^{214}$$
Pb \rightarrow_{82}^{210} Pb + x_{2}^{4} He + y_{-1}^{0} e

By mass:

$$214 = 210 + 4x$$

$$\Rightarrow x = 1$$

By charge:

$$82 = 82 + 2 \times - Y$$

$$\Rightarrow$$
 Y = 2

$$\therefore Q \rightarrow option(3)$$

(R)
$$_{81}^{210}$$
TL \rightarrow_{82}^{206} Pb + x_2^4 He $\times y_{-1}^0$ e

By mass:
$$210 = 206 + 4x$$

$$\Rightarrow$$
 x = 1

By charge:
$$81 = 82 + 2x - y$$

$$\Rightarrow$$
 y = 3

$$\therefore$$
 R \rightarrow option (2)

(S)
$$_{91}^{228}$$
 Pa \rightarrow_{88}^{224} Ra + x_{2}^{4} He + y_{-1}^{0} e

By mass:
$$228 = 224 + 4x$$

(2) three
$$\beta$$
- particles and one α particle

(3) two
$$\beta$$
- particles and one α particle

(4) one
$$\alpha$$
 particle and one β -particle

(5) one
$$\alpha$$
 particle and two β^+ particles

(B)
$$P \rightarrow 4, Q \rightarrow 1, R \rightarrow 2, S \rightarrow 5$$

(D)
$$P \rightarrow 5, Q \rightarrow 1, R \rightarrow 3, S \rightarrow 2$$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Physics)

JEE Adv. June 2023 | 04 June Paper-1

$$\Rightarrow$$
 x = 1

By charge:
$$91 = 88 + 2x - y$$

$$\Rightarrow$$
 y = -1

Its actually β^+

$$\therefore$$
 S \rightarrow option (1)

15. Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.

[Given: Wien's constant as 2.9×10^{-3} m–K and $\frac{hc}{e} = 1.24 \times 10^{-6}$ V – m]

List-I

(P) 2000 K

(A)
$$P \rightarrow 3, Q \rightarrow 5, R \rightarrow 2, S \rightarrow 3$$

(C)
$$P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 1$$

Ans. C

Sol. (P)
$$T = 2000K$$

$$\lambda = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{2000} = 1.45 \times 10^{-6} = 1450 \text{ nm}$$

Does not fall in visible range

Energy of photon,
$$E = \frac{hc}{\lambda} = \frac{1.24 \times 10^{-6}}{1.45 \times 10^{-6}} \text{ eV} = 0.855 < 4\text{ eV}$$

For first minima:

$$\theta = \sin^{-1}\frac{\lambda}{a}$$

 $\lambda \uparrow \theta \uparrow \& \lambda \times \frac{1}{T} \Rightarrow$ at lowest temp widest central mixima will be obtained. among all, 2000K is lowest.

List-II

- (1) The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV.
- (2) The radiation at peak wavelength is visible to human eye.
- (3) The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction.
- (4) The power emitted per unit area is 1/16 of that emitted by a blackbody at temperature 6000 K.
- (5) The radiation at peak emission wavelength can be used to image human bones.

(B)
$$P \rightarrow 3, Q \rightarrow 2, R \rightarrow 4, S \rightarrow 1$$

(D)
$$P \rightarrow 1, O \rightarrow 2, R \rightarrow 5, S \rightarrow 3$$

MATRIX JEE ACADEMY

JEE Adv. June 2023 | 04 June Paper-1

 $\therefore \theta$ is highest

 $P \rightarrow 3$

$$(Q): T = 3000K$$

$$\lambda = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{3000} \approx 10^{-6} = 1000 \, \text{nm}$$

Does not fall in visible range.

Energy of photon :
$$E = \frac{hc}{\lambda} = \frac{1.24 \times 10^{-6}}{10^{-6}} eV = 1.24 eV < 4 eV$$

$$\frac{P_{3000}}{P_{6000}} = \frac{eA\sigma(3000)^4}{eA\sigma(6000)^4} = \frac{1}{16}$$

$$Q \rightarrow (4)$$

$$(R): T = 5000K$$

$$\lambda = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{5000} = 0.58 \times 10^{-6} = 580 \text{nm}$$

it falls under visible region.

$$R \rightarrow 2$$

$$(S)T = 10000$$

$$\lambda = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{10000} = 2.9 \times 10^{-7} = 290 \text{ nm}$$

does not fall under visible region

Energy of photon:
$$E = \frac{hc}{\lambda} = \frac{1.24 \times 10^{-6}}{2.9 \times 10^{-7}} = 4.2eV$$

This photon can ejecte e^- from metal of $\phi = 4eV$

List-I	List-II
$(P) I_0 \text{ in mA}$	(1) 44.4
(Q) The quality factor of the circuit	(2) 18
(R) The bandwidth of the circuit in rad s ⁻¹	(3)400
(S) The peak power dissipated at resonance in Watt	(4) 2250

JEE Adv. June 2023 | 04 June Paper-1

(5)500

(A)
$$P \rightarrow 2, Q \rightarrow 3, R \rightarrow 5, S \rightarrow 1$$

(B)
$$P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 2$$

(C)
$$P \rightarrow 4, Q \rightarrow 5, R \rightarrow 3, S \rightarrow 1$$

(D)
$$P \rightarrow 4, Q \rightarrow 2, R \rightarrow 1, S \rightarrow 5$$

Ans. E

Sol.
$$\frac{1}{\sqrt{LC}} = 10^5$$

$$I_0 = \frac{45}{R}$$

$$0.05I_0 = \frac{45}{\sqrt{R^2 + \left(0.80 \times X_{L_0} - \frac{5}{4}X_{C_0}\right)^2}}$$

Where $X_{L_0} = X_{C_0}$ are at resonant frequencies

On solving,
$$R \simeq \frac{450 \Omega}{4} \Longrightarrow I_0 \simeq 400 \text{mA}$$

Quality factor
$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} \simeq 44.44$$

$$Q = \frac{\omega_0}{\Delta \omega} \Rightarrow \Delta \omega \approx 2250 \text{ rad/s}$$

Peak power =
$$45 \times \frac{400}{1000}$$
 W = 18

17. A thin conducting rod MN of mass 20 gm, length 25 cm and resistance $10~\Omega$ is held on frictionless, long, perfectly conducting vertical rails as shown in the figure. There is a uniform magnetic field $B_0 = 4~T$ directed perpendicular to the plane of the rod-rail arrangement. The rod is released from rest at time t = 0 and it moves down along the rails. Assume air drag is negligible. Match each quantity in List-I with an appropriate value from List-II, and choose the correct option.

[Given: The acceleration due to gravity $g = 10 \text{ m s}^{-2}$ and $e^{-1} = 0.4$]

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. June 2023 | 04 June Paper-1

	List-II
ude of the induced emf in Volt	(1) 0.07
ude of the magnetic force in Newton	(2) 0.14
dissipated as heat in Watt	(3) 1.20
inal velocity of the rod in m s ⁻¹	$(4) \ 0.12$
	(5) 2.00
	ude of the induced emf in Volt tude of the magnetic force in Newton dissipated as heat in Watt inal velocity of the rod in m s ⁻¹

(A)
$$P \rightarrow 5, Q \rightarrow 2, R \rightarrow 3, S \rightarrow 1$$

(B)
$$P \rightarrow 3, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 5$$

(C)
$$P \rightarrow 4, Q \rightarrow 3, R \rightarrow 1, S \rightarrow 2$$

(D)
$$P \rightarrow 3, Q \rightarrow 4, R \rightarrow 2, S \rightarrow 5$$

Ans. 1

Sol.

$$mg - i\ell B = ma$$

$$i = \frac{B\ell v}{R}$$

$$mg - \frac{B^2 \ell^2}{R} v = \frac{mdv}{dt}$$

$$\frac{dv}{dt} = g - \frac{B^2 \ell^2}{mR} v = g - cv$$

where
$$c = \frac{B^2 \ell^2}{mR} = 5$$

$$v = 2\left(1 - e^{-5t}\right)$$

at
$$t = 0.2 \Rightarrow v = 1.20$$

at
$$t = 0.2 \Rightarrow F_m = 0.12$$

$$P = i^2 R = 0.14$$

$$v_{terminal} = 2$$

$$(p) \rightarrow 3, (q) \rightarrow 4, (r) \rightarrow 2, (s) \rightarrow 5$$

MATRIX JEE ACADEMY