JEE Adv. August 2022 Question Paper With Text Solution 28 August | Paper-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE Adv. August 2022 | 28 August Paper-2

JEE ADV. AUGUST 2022 | 28^{TH.} AUGUST PAPER-2

SECTION 1 (Maximum marks: 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 TO 9, BOTH INCLUSIVE.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct integer is entered;

Zero Marks: 0 If the question is unanswered;

Negative Marks: -1 In all other cases.

1. Concentration of H_2SO_4 and Na_2SO_4 in a solution is 1 M and 1.8×10^{-2} M, respectively. Molar solubility of $PbSO_4$ in the same solution is $X \times 10^{-Y}$ M (expressed in scientific notation). The value of Y is _____. [Given: Solubility product of $PbSO_4$ (K_{sp}) = 1.6×10^{-8} . For H_2SO_4 , K_{a1} is very large and $K_{a2} = 1.2 \times 10^{-2}$]

Ans. (6)

Sol.
$$H_2SO_4 \Longrightarrow H^+ + HSO_4^-$$

1
0
1
 $HSO_4^- \Longrightarrow H^+ + SO_4^{2-}$
 $\underbrace{\begin{bmatrix} H^+ \end{bmatrix} \begin{bmatrix} SO_4^{2-} \end{bmatrix}}_{= 1.2 \times 10^{-2}} = 1.2 \times 10^{-2}$(1)

Conc. of SO_4^{2-} from Na_2SO_4 is 1.8×10^{-2} . If dissociation of HSO_4^{-} takes place then it would be more than 1.8×10^{-2} which is not possible according to equation (1)

$$HSO_{4}^{-} \rightleftharpoons H^{+} + SO_{4}^{2-}$$

$$1 1 1.8 \times 10^{-2}$$

$$1 + x 1 - x 1.8 \times 10^{-2} - x$$

$$\frac{(1.8 \times 10^{-2} - x)(1 - x)}{1 + x} = 1.2 \times 10^{-2}$$

Since value of x is very low

$$\begin{aligned} 1 + x &\approx 1 \\ 1 - x &\approx 1 \\ 1.8 \times 10^{-2} - x &= 1.2 \times 10^{-2} \\ x &= 0.6 \times 10^{-2} \\ [SO_4^{2-}] &= 1.2 \times 10^{-2} \end{aligned}$$

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-2

 $PbSO_4 \Longrightarrow Pb^{2+} + SO_4^{2-}$

s
$$s + 1.2 \times 10^{-2}$$

$$s(s + 1.2 \times 10^{-2}) = 1.6 \times 10^{-8}$$

$$s + 1.2 \times 10^{-2} \approx 1.2 \times 10^{-2}$$

(s)
$$(1.2 \times 10^{-2}) = 1.6 \times 10^{-8}$$

$$s = \frac{16}{12} \times 10^{-6}$$

2. An aqueous solution is prepared by dissolving 0.1 mol of an ionic salt in 1.8 kg of water at 35 °C. The salt remains 90% dissociated in the solution. The vapour pressure of the solution is 59.724 mm of Hg. Vapor pressure of water at 35 °C is 60.000 mm of Hg. The number of ions present per formula unit of the ionic salt is ______.

Ans. (5)

Sol.
$$\frac{\mathbf{P}^0 - \mathbf{P}_{\mathrm{S}}}{\mathbf{P}^0} = \frac{\mathrm{in}}{\mathrm{in} + \mathrm{N}}$$

$$\frac{60 - 59.724}{60} = \frac{i \times 0.1}{i \times 0.1 + \frac{1.8 \times 10^3}{18}}$$

$$\frac{0.276}{60} = \frac{i \times 0.1}{i \times 0.1 + 100}$$

$$i \times 0.1 \times 0.276 + 27.6 = 6i$$

$$i = \frac{27.6}{6 + 0.0276} = 4.6$$

 $i = 1 + \alpha (n - 1)$ {Where n = no. of ions produced by one formula unit of ionic compound}

$$4.6 = 1 + 0.9 (n - 1)$$

$$3.6 = 0.9 (n-1)$$

$$n - 1 = 4$$

$$n = 5$$

3. Consider the strong electrolytes $Z_m X_n$, $U_m Y_p$ and $V_m X_n$. Limiting molar conductivity $\left(\Lambda^0\right)$ of $U_m Y_p$ and $V_m X_n$ are 250 and 440 S cm² mol⁻¹, respectively. The value of (m+n+p) is ______.

	Ion			V^{n+}		
Given:	$\lambda^{0} \left(\text{S cm}^{2} \text{mol}^{-1} \right)$	50.0	25.0	100.0	80.0	100.0

 λ^0 is the limiting molar conductivity of ions

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Chemistry)

JEE Adv. August 2022 | 28 August Paper-2

The plot of molar conductivity (Λ) of $Z_m X_n$ vs $c^{1/2}$ is given below.

Ans. (7)

Sol. For
$$U_m Y_p$$

$$250 = m \times 25 + p \times 100 \dots (1)$$

For
$$V_m X_n$$

$$440 = m \times 100 + n \times 80 \dots (2)$$

For electrolyte $Z_m X_n$

$$\lambda_m = \lambda_m^0 - b \sqrt{c}$$

$$-b = \frac{336 - 339}{0.04 - 0.01} \Rightarrow b = 100$$

Hence at a Conc. of 0.04

$$336 = \lambda_{m}^{0} - 100 \times 0.04$$

$$\lambda_m^0 = 340$$

$$340 = m \times 50 + n \times 80 \dots (3)$$

From equation (1), (2) & (3)

$$m = 2, n = 3, p = 2$$

Hence m + n + p = 7

JEE Adv. August 2022 | 28 August Paper-2

4. The reaction of Xe and O_2F_2 gives a Xe compound **P**. The number of moles of HF produced by the complete hydrolysis of 1 mol of **P** is

Ans. (4)

Sol. Xe + $2O_2F_2 \rightarrow XeF_4 + 2O_2$

 $6\mathrm{XeF_4} + 12\mathrm{H_2O} \rightarrow 4\mathrm{Xe} + 2\mathrm{XeO_3} + 24\mathrm{HF} + 3\mathrm{O_2}$

Hydrolysis of one mole of XeF₄ (P) will produce 4 mole of HF.

5. Thermal decomposition of AgNO₃ produces two paramagnetic gases. The total number of electrons present in the antibonding molecular orbitals of the gas that has the higher number of unpaired electrons is

Ans. (6)

Sol. $2AgNO_3 \rightarrow 2Ag(s) + 2NO_2(g) + O_2(g)$

 NO_2 and O_2 both are paramagnetic but O_2 contains 2 unpaired electron where as NO_2 contains one. For O_2

$$\sigma_{ls}^2 \ \sigma_{ls}^{*2} \ \sigma_{2s}^{*2} \ \sigma_{2s}^{*2} \ \sigma_{2p_z}^{*2} \ \sigma_{2p_z}^{2} \ \pi_{2p_x}^{2} = \pi_{2p_y}^2 \pi_{2p_x}^{*1} = \pi_{2p_y}^{*1}$$

Total number of electrons in antibonding molecular orbitals = 6.

6. The number of isomeric tetraenes (**NOT** containing *sp*-hybridized carbon atoms) that can be formed from the following reaction sequence is ______.

- 1. Na, liquid NH₃
- 2. Br₂ (excess)
- 3. alc. KOH

Ans. (2)

JEE Adv. August 2022 | 28 August Paper-2

$$CH_{2}-C \equiv C-CH_{3}$$

$$Na, liquid NH_{3}$$

$$Br_{2} (excess)$$

$$CH_{2}-CH-CH-CH-CH_{3}$$

$$Alc. KOH$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

$$Br$$

The number of -CH₂- (methylene) groups in the product formed from the following reaction sequence 7.

- 1. O₃, Zn/H₂O

 2. KMnO₄
- 3. NaOH, electrolysis
- 4. Cr₂O₃, 770 K, 20 atm

(0)Ans.

$$\begin{array}{c} O_3, Zn/H_2O \\ \end{array}$$

$$2CH_3 - CH_2 - CH_2 - C - H \xrightarrow{KMnO_4} CH_3 - CH_2 - CH_2 - C - OH$$

Sol.

$$Cr_2O_3$$
, 770 K, 20 atm $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-2

8. The total number of chiral molecules formed from one molecule of $\bf P$ on complete ozonolysis (O_3 , Zn/

Ans. (2)

$$P$$
 OH
 OH

Sol.

$$+ OHC OHC CH3 OH CH3 CH$$

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-2

SECTION 2 (Maximum marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks: 0 If unanswered;

Negative Marks: -2 In all other cases.

9. To check the principle of multiple proportions, a series of pure binary compounds (P_mQ_n) were analyzed and their composition is tabulated below. The correct option(s) is(are)

Compound	Weight% of P	Weight% of Q
1	50	50
2 11	44.4	55.6
3	40	60

- (A) If empirical formula of compound 3 is P_3Q_4 , then the empirical formula of compound 2 is P_3Q_5 .
- (B) If empirical formula of compound 3 is P_3Q_2 and atomic weight of element P is 20, then the atomic weight of Q is 45.
- (C) If empirical formula of compound 2 is PQ, then the empirical formula of the compound 1 is P_5Q_4 .
- (D) If atomic weight of P and Q are 70 and 35, respectively, then the empirical formula of compound 1 is P_2Q .

Ans. (B), (C)

Sol. (A) If empirical formula of compound 3 is P_3Q_4 .

$$\frac{3M_{\rm P}}{3M_{\rm P} + 4M_{\rm Q}} \times 100 = 40$$

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Chemistry)

JEE Adv. August 2022 | 28 August Paper-2

$$15 M_{p} = 6 M_{p} + 8M_{Q}$$
$$9M_{p} = 8M_{Q}$$

$$\frac{M_{\rm P}}{M_{\rm Q}} = \frac{8}{9}$$

Hence for compound 2

Weight % of P =
$$\frac{3M_P}{3M_P + 5M_Q} \times 100$$

$$=\frac{3\times\frac{8M_{Q}}{9}}{3\times\frac{8M_{Q}}{9}+5M_{Q}}\times100$$

$$=\frac{\frac{8}{3}}{\frac{8}{3}+5} \times 100 = 34.78\%$$

(B)
$$\frac{3M_{\rm p}}{3M_{\rm p} + 2M_{\odot}} \times 100 = 40$$

$$\Rightarrow 9M_p = 4M_O$$

$$\mathbf{M}_{Q} = \frac{9 \times 20}{4} = 45$$

(C) If empirical formula of 2 is PQ

$$\frac{M_{\rm p}}{M_{\rm p} + M_{\odot}} \times 100 = 44.4$$

$$\Rightarrow$$
 5M_P = 4M_Q

For compound 1

$$\frac{5M_{\rm p}}{5M_{\rm p} + 4M_{\rm O}} \times 100 = 50$$

	Element	Mass%	Mole	Relation ratio of atoms
(D)	P	50	$\frac{50}{70}$	1
(D)	Q	50	$\frac{50}{35}$	2

$$E.F. = PQ$$

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-2

The correct option(s) about entropy (S) is(are) 10.

[R = gas constant, F = Faraday constant, T = Temperature]

- (A) For the reaction, $M(s) + 2H^{+}(aq) \rightarrow H_{2}(g) + M^{2+}(aq)$, if $\frac{dE_{cell}}{dT} = \frac{R}{F}$, then the entropy change of the reaction is R (assume that entropy and internal energy changes are temperature independent).
- (B) The cell reaction, $Pt(s) \mid H_2(g, Ibar) \mid H^+(aq, 0.01M) \mid H^+(aq, 0.1M) \mid H_2(g, 1 bar) \mid Pt(s)$, is an entropy driven process.
- (C) For racemization of an optically active compound, $\Delta S > 0$.
- (D) $\Delta S > 0$, for $[Ni(H_2O)_6]^{2+} + 3$ en $\rightarrow [Ni(en)_2]^{2+} + 6H_2O$ (where en = ethylenediamine).

(B), (C) & (D)Ans.

Sol. (A)
$$\Delta S = nF \frac{dE_{cell}}{dt}$$

$$\Delta S = 2F \times \frac{R}{F} = 2R$$

(B) Cell reaction is

$$\left[2H^{+}\left(aq.\right)\right]_{cathode} \rightarrow \left[2H^{+}\left(aq.\right)\right]_{anode}$$

$$E_{cell} = 0 - \frac{0.059}{2} log \frac{(0.01)^2}{(0.1)^2} = 0.059$$

Hence reaction is spontaneous and it is spontaneous due to entropy charge as ΔH is almost zero.

- (C) During racemisation of optically active compound, disorder increases.
- (D) In this process number of molecules increases hence entropy increases.
- 11. The compound(s) which react(s) with NH, to give boron nitride (BN) is(are)

(A) B

 $(B) B_2 H_6$

 $(C) B_2O_3$

(D) HBF₄

(A), (B) & (C)Ans.

Sol.
$$B(Amorphous) + NH_3 \xrightarrow{Very high \ Temperature} BN + H_2$$

$$B_2H_6 + NH_3(excess) \rightarrow (BN)_s$$

$$B_{2}O_{3} + 2NH_{3} \rightarrow 2BN + 3H_{2}O$$

 $HBF_{4} + NH_{3} \rightarrow [NH_{4}^{+}] [BF_{4}^{-}]$

$$HBF_{4} + NH_{3} \rightarrow [NH_{4}^{+}] [BF_{4}^{-}]$$

JEE Adv. August 2022 | 28 August Paper-2

- 12. The correct option(s) related to the extraction of iron from its ore in the blast furnace operating in the temperature range 900 1500 K is (are)
 - (A) Limestone is used to remove silicate impurity.
 - (B) Pig iron obtained from blast furnace contains about 4% carbon.
 - (C) Coke (C) converts CO, to CO.
 - (D) Exhaust gases consist of NO₂ and CO.

Ans. (A), (B) & (C)

- Sol. (A) $CaO + SiO_2 \rightarrow CaSiO_3$
 - (B) In fusion zone molten iron absorbs elemental impurities and pig iron is obtained which contains 4% carbon.
 - (C) C + CO, \rightarrow 2CO
 - (D) Exhaust gases consist of CO and CO₂.
- 13. Considering the following reaction sequence, the correct statement(s) is(are)

- (A) Compounds P and Q are carboxylic acids.
- (B) Compound S decolorizes bromine water.
- (C) Compounds P and S react with hydroxylamine to give the corresponding oximes.
- $(D) \ Compound \ R \ reacts \ with \ dialkylcadmium \ to \ give \ the \ corresponding \ tertiary \ alcohol.$

Ans. (A), (C)

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-2

- 14. Among the following, the correct statement(s) about polymers is(are)
 - (A) The polymerization of chloroprene gives natural rubber.
 - (B) Teflon is prepared from tetrafluoroethene by heating it with persulphate catalyst at high pressures.
 - (C) PVC are thermoplastic polymers.
 - (D) Ethene at 350-570 K temperature and 1000-2000 atm pressure in the presence of a peroxide initiator yields high density polythene.

Ans. (B), (C)

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Chemistry)

JEE Adv. August 2022 | 28 August Paper-2

- Sol. (A) Polymerization of choloroprene gives synthetic rubber.
 - (B) Teflon is prepared by heating tetraflorroethene with a free radical or persulphate catalyst at high pressure.
 - (C) PVC is a thermo plastic polymer
 - (D) Ethene at 350-570 K temperature and 1000-2000 atm pressure in the presence of a peroxide initiator yields low density polythene.

SECTION 3 (Maximum marks: 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

- Atom X occupies the fcc lattice sites as well as alternate tetrahedral voids of the same lattice. The 15. packing efficiency (in %) of the resultant solid is closest to
 - (A) 25
- (B) 35
- (C) 55
- (D) 75

(B) Ans.

Sol.
$$\frac{\sqrt{3}a}{4} = 2a$$

$$a = \frac{8r}{\sqrt{3}}$$

Packing efficiency =
$$\frac{8 \times \frac{4}{3} \pi r^{3}}{a^{3}} \times 100 \approx 34\%$$

- The reaction of HClO3 with HCl gives a paramagnetic gas, which upon reaction with O3 produces 16.
 - (A) Cl₂O
- (B) ClO,
- (C) Cl₂O₆
- (D) Cl_2O_7

(C) Ans.

Sol.
$$HClO_3$$
 + HCl

$$HCl \rightarrow$$

$$\rightarrow \qquad \text{ClO}_2 \quad + \qquad \text{Cl}_2 \quad \ + \qquad \text{H}_2\text{O}$$

$$Cl_2$$

$$H_2$$

(Paramagnetic) $ClO_{2} + O_{3} \rightarrow Cl_{2}O_{6} +$

$$O_2$$

JEE Adv. August 2022 | 28 August Paper-2

- 17. The reaction of Pb(NO₃)₂ and NaCl in water produces a precipitate that dissolves upon the addition of HCl of appropriate concentration. The dissolution of the precipitate is due to the formation of
 - (A) PbCl,
- (B) PbCl₄
- (C) $[PbCl_{\lambda}]^{2-}$
- (D) [PbCl₆]²⁻

Ans. (C)

Sol.
$$Pb(NO_3)_2 + NaCl \longrightarrow PbCl_2 + NaNO_3$$

$$excess HCl$$

$$PbCl_2^{2-}$$

18. Treatment of D-glucose with aqueous NaOH results in a mixture of monosaccharides, which are

JEE Adv. August 2022 | 28 August Paper-2

Ans. (C)

MATRIX JEE ACADEMY