JEE Adv. August 2022 Question Paper With Text Solution 28 August | Paper-1

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE Adv. August 2022 | 28 August Paper-1

JEE ADV. AUGUST 2022 | 28^{TH.} AUGUST PAPER-1

SECTION 1 (Maximum Marks: 24)

- This section contains EIGHT (08) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 ONLY if the correct numerical value is entered;

Zero Marks: 0 In all other cases.

1. 2 mol of Hg(g) is combusted in a fixed volume bomb calorimeter with excess of O₂ at 298 K and 1 atm into HgO(s). During the reaction, temperature increases from 298.0 K to 312.8 K. If heat capacity of the bomb calorimeter and enthalpy of formation of Hg(g) are 20.00 kJ K⁻¹ and 61.32 kJ mol⁻¹ at 298 K, respectively, the calculated standard molar enthalpy of formation of HgO(s) at 298 K is X kJ mol⁻¹. The value of |X| is

[Given: Gas constant R = 8.3 J K - 1 mol - 1]

-90.39 Ans.

Ans.
$$-90.39$$

Sol. $Hg(g) + \frac{1}{2}O_2(g) \rightarrow HgO(s)$ (1)
 $q_V = C\Delta T$
 $= 20 (312.8 - 298) = 296 \text{ kJ}$
 $\Delta U = -\frac{296}{2} = -148 \text{ kJ/mole}$

$$\Delta H = \Delta U + \Delta n_{g}RT$$

$$\Delta H = -148 + \frac{\left(-\frac{3}{2}\right) \times 8.3 \times 298}{1000} = -151.71 \text{kJ}$$

For reaction(1) $\Delta H = \Delta H_{f} (HgO, s) - \Delta H_{f} (Hg, g)$ $-151.71 = \Delta H_s(HgO, s) - 61.32$

 $\Rightarrow \Delta H_{c} (HgO, s) = -90.39$

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-1

2. The reduction potential (E^0 , in V) of $MnO_4^-(aq)/Mn(s)$ is _____.

[Given:
$$E^0_{\left(MnO_4^-(aq)/MnO_2(s)\right)} = 1.68 \text{ V}; \ E^0_{\left(MnO_2(s)/Mn^{2+}(aq)\right)} = 1.21 \text{ V}; \ E^0_{\left(Mn^{2+}(aq)/Mn(s)\right)} = -1.03 \text{ V}$$
]

- Ans. 0.77
- Sol. $4H^{+}(aq) + MnO_{4}^{-}(aq) + 3e^{-} \rightarrow MnO_{2}(s) + 2H_{2}O(l)$

$$\Delta G_1^{\circ} = -3F \times 1.68$$

 $2e^- + 4H^+(aq) + MnO_2(s) \rightarrow Mn^{2+}(aq) + 2H_2O(l)$

$$\Delta G_2^{\circ} = -2F \times 1.21$$

 $2e^- + Mn^{2+}(aq) \rightarrow Mn(s)$

$$\Delta G_{3}^{\circ} = -2F (-1.03)$$

 $7e^- + 8H^+(aq) + MnO_4^-(aq) \rightarrow Mn(s) + 4H_2O(l)$

$$\Delta G^{\circ} = -7 FE^{\circ}$$

$$\Delta G^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ} + \Delta G_3^{\circ}$$

$$-7FE^{\circ} = -3F \times 1.68 - 2F \times 1.21 + 2F \times 1.03$$

$$E^{\circ} = \frac{3 \times 1.68 + 2 \times 1.21 - 2 \times 1.03}{7} = 0.77$$

- 3. A solution is prepared by mixing 0.01 mol each of H₂CO₃, NaHCO₃, Na₂CO₃, and NaOH in 100 mL of water. pH of the resulting solution is _____.
 - [Given: pK_{a1} and pK_{a2} of H_2CO_3 are 6.37 and 10.32, respectively; $\log 2 = 0.30$]
- Ans. 10.02
- Sol. $H_2CO_3 + NaOH \rightarrow NaHCO_3 + H_2O$
 - 0.01 0.01
 - 0 0 0

Finally solution will contain

0.02 mole NaHCO₃ and 0.01 mole Na₂CO₃. Hence final solution is a buffer of HCO₃⁻ and CO₃²⁻

$$pH = 10.32 + log \frac{0.01}{0.02}$$
$$= 10.32 - 0.3$$
$$= 10.02$$

- 4. The treatment of an aqueous solution of 3.74 g of $Cu(NO_3)_2$ with excess KI results in a brown solution along with the formation of a precipitate. Passing H_2S through this brown solution gives another precipitate X. The amount of X (in g) is _____.
 - [Given: Atomic mass of H = 1, N = 14, O = 16, S = 32, K = 39, Cu = 63, I = 127]
- Ans. 0.32
- Sol. $Cu^{2+} + I^{-} \rightarrow Cu^{+} + I_{2}$

$$I_2 + H_2S \rightarrow S + I^-$$

equivalent of Cu^{2+} = equivalent of S

$$\frac{3.74}{187.5} \times 1 = \mathbf{x} \times 2$$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email:smd@matrixacademy.co.in

JEE Adv. August 2022 | 28 August Paper-1

 $x = 9.97 \times 10^{-3}$ mole Mass of 'S' = $9.97 \times 10^{-3} \times 32$ = 0.319 gm = 0.32 gm

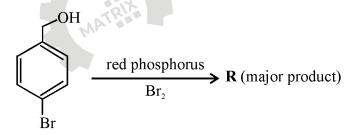
5. Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas Q.

The amount of CuSO₄ (in g) required to completely consume the gas Q is ______.

[Given: Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63]

Ans. 2.385

Sol.
$$3H_2O + P_4 + 3NaOH \rightarrow 3NaH_2PO_2 + PH_3$$
 (Q)
 $2PH_3 + 3CuSO_4 \rightarrow Cu_3P_2 + 3H_2SO_4$
moles of P_4 = moles of PH_3


$$\frac{1.24}{124} = \text{moles of PH}_3$$

moles of $CuSO_4 = moles of PH_3 \times \frac{3}{2}$

$$=\frac{0.03}{2}$$

mass of $CuSO_4 = \frac{0.03}{2} \times 159 = 2.385 \text{ gm}$

6. Consider the following reaction.

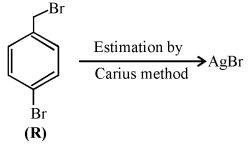
On estimation of bromine in 1.00 g of R using Carius method, the amount of AgBr formed (in g) is

[Given: Atomic mass of H = 1, C = 12, O = 16, P = 31, Br = 80, Ag = 108]

Ans. 1.504

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

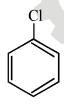


JEE Adv. August 2022 | 28 August Paper-1

$$\begin{array}{c|c}
 & \text{Red phosphorus} \\
 & \text{Br}_{2}
\end{array}$$

$$\begin{array}{c}
 & \text{Br} \\
 & \text{(R)}
\end{array}$$

Sol.


Moles of Br in R = moles of Br in AgBr

$$\frac{1}{250} \times 2 = 1 \times moles of AgBr$$

Moles of AgBr =
$$\frac{1}{125}$$

Mass of AgBr =
$$\frac{1}{125} \times 188 = 1.504 \,\text{gm}$$

The weight percentage of hydrogen in **Q**, formed in the following reaction sequence, is ______. 7.

1. NaOH, 623 K, 300 atm \rightarrow Q (major product) 2. Conc. H₂SO₄ and then

Conc. HNO₃

[Given: Atomic mass of H = 1, C = 12, N = 14, O = 16, S = 32, C1 = 35]

1.31 Ans.

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-1

Weight percentage of 'H' in Q = $\frac{3 \times 1}{229} \times 100 = 1.31$

8. If the reaction sequence given below is carried out with 15 moles of acetylene, the amount of the product **D** formed (in g) is

NO₂ (**Q**)

HC = CH
$$\xrightarrow{\text{iron tube}}$$
 $A \xrightarrow{\text{(80\%)}}$ $A \xrightarrow{\text{AlCl}_3}$ $A \xrightarrow{\text{B}}$ $A \xrightarrow{\text{CH}_3\text{COCH}_3}$ $A \xrightarrow{\text$

The yields of A, B, C and D are given in parentheses.

[Given: Atomic mass of H = 1, C = 12, O = 16, Cl = 35]

Ans. 136

Sol.

Sol. 3HC = CH
$$\xrightarrow{\text{Iron tube}}$$
 C₆H₆
(Red hot) A
(80%)

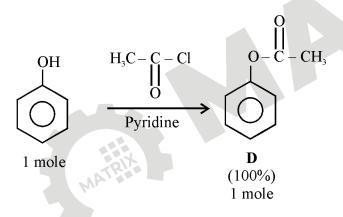
MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-1

$$C_{6}H_{6}$$

$$4 \text{ mole}$$

$$CH_{3}-CH-CH_{3}$$


$$AlCl_{3}$$

$$B$$

$$(50\%)$$

$$2 \text{ mole}$$

$$\begin{array}{c|c} CH_3 - CH - CH_3 \\ \hline \\ 2 \text{ mole} \end{array} \begin{array}{c} 1. \text{ O}_2 \\ \hline \\ 2. \text{ H}_3\text{O}^+ \end{array} \begin{array}{c} OH \\ \hline \\ \\ C \\ \hline \\ (50\%) \\ 1 \text{ mole} \end{array}$$

JEE Adv. August 2022 | 28 August Paper-1

SECTION 2 (Maximum Marks: 24)

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 ONLY if (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct; Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -2 In all other cases.

- 9. For diatomic molecules, the correct statement(s) about the molecular orbitals formed by the overlap of two 2p_x orbitals is(are)
 - (A) σ orbital has a total of two nodal planes.
 - (B) σ^* orbital has one node in the xz-plane containing the molecular axis.
 - (C) π orbital has one node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule.
 - (D) π^* orbital has one node in the xy-plane containing the molecular axis.

Ans. (A) & (D)

MATRIX JEE ACADEMY

MATRIX

Sol.

Question Paper With Text Solution (Chemistry)

JEE Adv. August 2022 | 28 August Paper-1

Nodal plane - z-axis P_z P_{z} σ MO \Rightarrow Total 2 nodal plane Nodal plane (+)·· z-axis P_z P_z $\sigma^* \Rightarrow$ zero node in the xz plane Nodal plane + (+)---- x-axis (C) π-МО P_z zero node in the plane which is perpendicular to the molecular axis and goes through the center of the molecule Nodal plane (+)x–axis (D)

One node in xy plane containing the molecular axis

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Chemistry)

JEE Adv. August 2022 | 28 August Paper-1

- 10. The correct option(s) related to adsorption processes is(are)
 - (A) Chemisorption results in a unimolecular layer.
 - (B) The enthalpy change during physisorption is in the range of 100 to 140 kJ mol⁻¹.
 - (C) Chemisorption is an endothermic process.
 - (D) Lowering the temperature favors physisorption processes.

Ans. (A), (D)

- Sol. (A) Chemisorption always have unimolecular layer.
 - (B) The enthalpy change during physisorption is in the range of $20 40 \text{ kJ mol}^{-1}$.
 - (C) Chemisorption is an exothermic process.
 - (D) Physisorption increases on decreasing temperature.
- 11. The electrochemical extraction of aluminum from bauxite ore involves
 - (A) the reaction of Al₂O₃ with coke (C) at a temperature ≥ 2500 °C.
 - (B) the neutralization of aluminate solution by passing CO₂ gas to precipitate hydrated alumina (Al₂O₃.3H₂O).
 - (C) the dissolution of Al₂O₃ in hot aqueous NaOH.
 - (D) the electrolysis of Al_2O_3 mixed with Na_3AlF_6 to give Al and CO_2 .

Ans. (B), (C), (D)

- Sol. (A) Al₂O₃ containing SiO₂ as impurity is mixed with Coke (C) at a temperature 1800°C.
 - (B) Aluminate solution is neutralized by passing CO₂ gas to precipitate hydrated alumina
 - (C) Al₂O₃ is leached by dissolving in NaOH.
 - (D) Al_2O_3 is mixed with Na_3AlF_6 and CaF_2 and electrolysed to give Al and O_2 . O_2 obtained at anode reacts with rods made up of C to give CO_2 .
- 12. The treatment of galena with HNO₃ produces a gas that is
 - (A) paramagnetic

(B) bent in geometry

(C) an acidic oxide

(D) colorless

Ans. (A), (D)

- Sol. $PbS + HNO_3 \rightarrow PbSO_4 + S + H_2O + NO(g)$
 - → NO is paramagnetic due to presence of one unpaired e⁻.
 - \rightarrow NO is colorless and it is a neutral oxide.
 - → Geometry of NO is linear.

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-1

13. Considering the reaction sequence given below, the correct statement(s) is(are)

$$H_{3}C$$
 COOH $\xrightarrow{1. \text{ Br}_{2}, \text{ red phosphorus}} \mathbf{P}$ $\xrightarrow{2. \text{ NaOH}}$ \mathbf{Q} + $\xrightarrow{2. \text{ NaOH}}$ \mathbf{Q} + \mathbf{Q}

- (A) P can be reduced to a primary alcohol using NaBH₄.
- (B) Treating P with conc. NH₄OH solution followed by acidification gives Q.
- (C) Treating **Q** with a solution of NaNO₂ in aq. HCl liberates N₂.
- (D) ${\bf P}$ is more acidic than ${\rm CH_3CH_2COOH}$.

Ans. (B), (C) & (D)

$$CH_{3}CH_{2}COOH \xrightarrow{\begin{array}{c} 1. \text{ Br}_{3}, \text{ red phosphorus} \\ \hline 2. \text{ H}_{2}O \end{array}} CH_{3} - CH - COOH \\ \hline Br \\ COOH \\ \hline Sol. \\ CH_{3} - CH - COOH \\ \hline \\ COOH \\ COOH \\ \hline \\ COOH \\ C$$

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-1

(A) NaBH₄ can not reduce carboxylic acids.

(B)
$$CH_3 - CH - COOH \xrightarrow{1. \text{ Conc. } NH_4OH} \rightarrow CH_3 - CH - COOH \\ Br OH$$

(C) 1° amine on reaction with NaNO₂ + HCl will liberate N₂.

(D)
$$CH_3 - CH - COOH > CH_3 - CH_2 - COOH$$

Br

Order of acidic strength (due to -I effect of Br)

14. Considering the following reaction sequence,

the correct option(s) is(are)

(A)
$$P = H_2/Pd$$
, ethanol;

$$\mathbf{R} = \text{NaNO}_2/\text{HCl};$$

$$\mathbf{U} = 1. \, \mathbf{H}_{3} \mathbf{PO}_{2},$$

(B)
$$\mathbf{P} = \text{Sn/HCl}$$

$$\mathbf{R} = HNO_{2}$$

$$\mathbf{S} = \bigvee_{\mathbf{H}_3\mathbf{C}} \overset{\overset{\smile}{\mathbf{N}_2\mathbf{C}}\mathbf{1}}{\mathbf{N}_2\mathbf{C}}$$

(C)
$$\mathbf{S} = \mathbf{H}_{3}\mathbf{C}$$

$$T = H_{*}C$$

$$\mathbf{U} = 1. \ \mathbf{CH}_3 \mathbf{CH}_2 \mathbf{OH}$$

(D)
$$Q = \frac{1}{1000}$$

$$\mathbf{R} = H_{\gamma}/Pd$$
, ethanol

$$T = H_3C$$

Ans. (A), (B), (C)

MATRIX JEE ACADEMY

COOH

Question Paper With Text Solution (Chemistry)

JEE Adv. August 2022 | 28 August Paper-1

Sol. (A)
$$H_{3}C$$
 H_{4}/Pd_{1} ethanol $H_{3}C$ H_{4}/Pd_{2} ethanol H_{4}/Pd_{3} ethanol H_{4}/Pd_{4} et

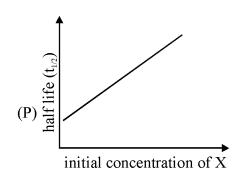
MATRIX JEE ACADEMY

LIST-II

SECTION 3 (Maximum Marks: 12)

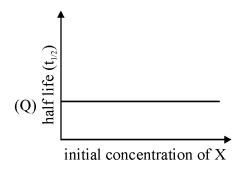
- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists: List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Five entries (P), (Q), (R), (S) and (T).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 ONLY if the option corresponding to the correct combination is chosen;


Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

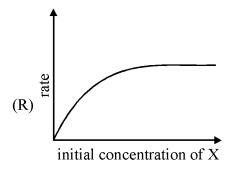
15. Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. X_s and k are constants having appropriate units.


LIST-I

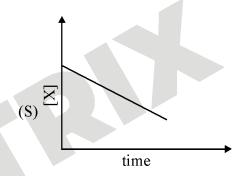
(I) rate =
$$\frac{k[X]}{X_s + [X]}$$

under all possible initial concentrations of X

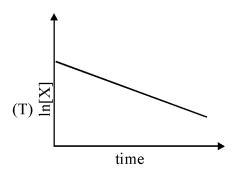
(II) rate =
$$\frac{k[X]}{X_s + [X]}$$



where initial concentrations of X are much less than X_s


JEE Adv. August 2022 | 28 August Paper-1

(III) rate =
$$\frac{k[X]}{X_s + [X]}$$


where initial concentrations of X are much higher than X_s

(IV) rate =
$$\frac{k[X]^2}{X_s + [X]}$$

where initial concentration of X is much higher than X_s

(A)
$$I \rightarrow P$$
; $II \rightarrow Q$; $III \rightarrow S$; $IV \rightarrow T$

(B)
$$I \rightarrow R$$
; $II \rightarrow S$; $III \rightarrow S$; $IV \rightarrow T$

(C)
$$I \rightarrow P$$
; $II \rightarrow Q$; $III \rightarrow Q$; $IV \rightarrow R$

(D)
$$I \rightarrow R$$
; $II \rightarrow S$; $III \rightarrow Q$; $IV \rightarrow R$

Ans. (A)

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email:smd@matrixacademy.co.in

Sol.

Case - I

If $[X] \ll X_s$ then $X_s + [X] \approx X_s$

$$r = \frac{K[X]}{X_s}$$

$$r = K'[X]$$

Hence it is a first order reaction w.r.t. 'X'.

Case - II

 $[X] >>> X_s$ then $[X] + X_s \approx [X]$

$$r = \frac{K[X]}{[X]}$$

$$r = K$$

Hence it is a zero order reaction w.r.t. 'X'.

$$r = \frac{k[X]^2}{X_s + [X]}$$

If
$$[X] \gg X_s$$
 then $[X] + X_s \approx [X]$

$$r = \frac{k[X]^2}{[X]}$$

$$r = k[X]$$

Hence it is a first order reaction w.r.t. 'x'.

16. LIST-I contains compounds and LIST-II contains reactions

LIST-I

$$(I) H2O2$$

$$(II) Mg(OH)_2$$

LIST-II

(P)
$$Mg(HCO_3)_2 + Ca(OH)_2 \rightarrow$$

$$(Q) BaO2 + H2SO4 \rightarrow$$

(R) Ca(OH),
$$+$$
 MgCl, \rightarrow

(S) BaO₂ + HCl
$$\rightarrow$$

(T)
$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow$$

Match each compound in LIST-I with its formation reaction(s) in LIST-II, and choose the correct option

(A)
$$I \rightarrow Q$$
; $II \rightarrow P$; $III \rightarrow S$; $IV \rightarrow R$

(B) I
$$\rightarrow$$
 T; II \rightarrow P; III \rightarrow Q; IV \rightarrow R

(C)
$$I \rightarrow T$$
; $II \rightarrow R$; $III \rightarrow Q$; $IV \rightarrow P$

(D)
$$I \rightarrow Q$$
; $II \rightarrow R$; $III \rightarrow S$; $IV \rightarrow P$

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

JEE Adv. August 2022 | 28 August Paper-1

Ans. (D)

Sol.
$$Mg(HCO_3)_2 + 2Ca(OH)_2 \rightarrow 2CaCO_3 + Mg(OH)_2 + 2H_2O$$

$$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$$

$$Ca(OH)_2 + MgCl_2 \rightarrow Mg(OH)_2 + CaCl_2$$

$$BaO_2 + 2HCl \rightarrow BaCl_2 + H_2O_2$$

$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 + 2H_2O$$

17. LIST-I contains metal species and LIST-II contains their properties.

LIST-I

LIST-II

(P) t₂₀ orbitals contain 4 electrons

(II)
$$[RuCl_{\epsilon}]^{2-}$$

(Q) μ (spin-only) = 4.9 BM

(III)
$$[Cr(H_2O)_6]^{2+}$$

(R) low spin complex ion

(IV)
$$[Fe(H_2O)_6]^{2+}$$

(S) metal ion in +4 oxidation state

(T) d⁴ species

[Given: Atomic number of Cr = 24, Ru = 44, Fe = 26]

Match each metal species in LIST-I with their properties in LIST-II, and choose the correct option

(A)
$$I \rightarrow R$$
, T; $II \rightarrow P$, S; $III \rightarrow Q$, T; $IV \rightarrow P$, Q

(B) I
$$\rightarrow$$
 R, S; II \rightarrow P, T; III \rightarrow P, Q; IV \rightarrow Q, T

(C) I
$$\rightarrow$$
 P, R; II \rightarrow R, S; III \rightarrow R, T; IV \rightarrow P, T

(D)
$$I \rightarrow Q$$
, T; $II \rightarrow S$, T; $III \rightarrow P$, T; $IV \rightarrow Q$, R

Ans. (A)

Sol. (I)
$$[Cr(CN)_6]^4$$

$$Cr^{2+} \equiv 3d^4$$

Electronic configuration $\equiv t_{2g}^{2,1,1} e_{g}^{0,0}$

Low spin complex

$$\mu = \sqrt{2 + (2 + 2)} = \sqrt{8} \ B.M.$$

(II)
$$[Ru(Cl)_6]^{2-}$$

$$Ru^{4+} = 4d^4$$

Electronic configuration $\equiv t_{2g}^{-1,1,1} e_{g}^{1,0}$

High spin complex

$$\mu = \sqrt{4 + (4 + 2)} = \sqrt{24}$$
 B.M.

$$Cr^{2+} = 3d^4$$

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

JEE Adv. August 2022 | 28 August Paper-1

Electronic configuration $\equiv t_{2g}^{-1,1,1} e_g^{1,0}$ High spin complex

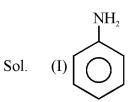
$$\mu = \sqrt{4 + (4 + 2)} = \sqrt{24}$$
 B.M.

$$Fe^{2+} = 3d^6$$

Electronic configuration $\equiv t_{2g}^{2,1,1} e_g^{1,1}$

High spin complex

$$\mu = \sqrt{4 + (4 + 2)} = \sqrt{24}$$
 B.M.


18. Match the compounds in LIST-I with the observations in LIST-II, and choose the correct option.

LIST-II LIST-II

- (I) Aniline (P) Sodium fusion extract of the compound on boiling with FeSO₄, followed by acidification with conc. H₂SO₄, gives Prussian blue color.
- (II) o-Cresol (Q) Sodium fusion extract of the compound on treatment with sodium nitroprus side gives blood red color.
- (III) Cysteine (R) Addition of the compound to a saturated solution of NaHCO₃ results in effervescence.
- (IV) Caprolactam (S) The compound reacts with bromine water to give a white precipitate.

 (T) Treating the compound with neutral FeCl₃ solution produces violet color.
- $(A) \: I \rightarrow P, Q; \: II \rightarrow S; \: III \rightarrow Q, R; \: IV \rightarrow P$
- (B) $I \rightarrow P$; $II \rightarrow R$, S; $III \rightarrow R$; $IV \rightarrow Q$, S
- (C) $I \rightarrow Q, S$; $II \rightarrow P, T$; $III \rightarrow P$; $IV \rightarrow S$
- (D) $I \rightarrow P,S$; $II \rightarrow T$; $III \rightarrow Q,R$; $IV \rightarrow P$

Ans. (D)

Aniline contains both 'C' and 'N'. Hence its sodium fusion extract on boiling with H_2SO_4 , Followed by acidification with Conc. H_2SO_4 gives purssian blue color.

$$6\text{CN}^- + \text{Fe}^{2+} \rightarrow [\text{Fe}(\text{CN})_6]^4$$

MATRIX JEE ACADEMY

JEE Adv. August 2022 | 28 August Paper-1

 $3[Fe(CN)_6]^4 + 4Fe^{3+} \xrightarrow{\quad xH_2O\quad} Fe_4[Fe(CN)_6]_3.xH_2O \text{ (Purssian Blue)}$

$$\begin{array}{c}
 & \text{NH}_2 \\
 & \text{Br}_2
\end{array}$$

$$\begin{array}{c}
 & \text{Br}_2 \\
 & \text{Br}
\end{array}$$
White ppt

(II) O-cresol

$$\begin{array}{c|c}
OH \\
\hline
CH_3 \\
\hline
FeCl_3
\end{array}$$
Voilet colored complex

(III) Cysteine

It gives blood red color with NaSCN.

It contains COOH hence it will give efferve scence of ${\rm CO_2}$ with ${\rm NaHCO_3}$.

(IV) Caprolactam

It contains both 'C' and 'N'. Hence its sodium fusion extract on boiling with H_2SO_4 , Followed by acidification with Conc. H_2SO_4 gives purssian blue color.

MATRIX JEE ACADEMY