JEE Adv. October 2021 Question Paper With Text Solution 03 October. | Paper-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE Adv. October 2021 | 03 October Paper-2

JEE ADV. OCTOBER 2021 | 03 OCTOBER PAPER-2

SECTION - A

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks: 0 If unanswered;

Negative Marks: -2 In all other cases.

• For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get -2 marks.

MATRIX JEE ACADEMY

JEE Adv. October 2021 | 03 October Paper-2

1. The reaction sequence(s) that would lead to o-xylene as the major product is(are)

(C)
$$\stackrel{\text{1. i. BH}_3}{=}$$
 $\stackrel{\text{ii. H}_2O_2, \text{ NaOH}}{=}$ $\stackrel{\text{2. PBr}_3}{=}$ $\stackrel{\text{3. Zn, dil. HCl}}{=}$ (D) $\stackrel{\text{2. N}_2H_4, \text{ KOH, heat}}{=}$

Ans. (A), (B)

Sol. (A)
$$NH_2$$
 $NaNO_2/HCl$ Me $N_2^+Cl^ Me$ $N_2^+Cl^ NaNO_2/HCl$ Me $NaNO_2/HCl$ Me N

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. October 2021 | 03 October Paper-2

(C)
$$\xrightarrow{\text{Me}}$$
 $\xrightarrow{\text{BH}_3}$ $\xrightarrow{\text{H}_2\text{O}_2/\text{OH}^-}$ $\xrightarrow{\text{He}}$ $\xrightarrow{\text{OH}}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{C}_2\text{H}_5}$ $\xrightarrow{\text{dil.HCl}}$ $\xrightarrow{\text{Br}}$ $\xrightarrow{\text{PBr}_3}$

(D)
$$O_3$$
 O_3 O_4 O_4 O_5 O_5 O_7 O_8 O_8

Correct option(s) for the following sequence of reactions is(are) 2.

(A) $\mathbf{Q} = \text{KNO}_2$, $\mathbf{W} = \text{LiAlH}_4$

(B) \mathbf{R} = benzenamine, \mathbf{V} = KCN

(C) $\mathbf{Q} = \text{AgNO}_2$, $\mathbf{R} = \text{phenylmethanamine}$ (D) $\mathbf{W} = \text{LiAlH}_4$, $\mathbf{V} = \text{AgCN}$

Ans. (C), (D)

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. October 2021 | 03 October Paper-2

Sol.

3. For the following reaction

$$2X + Y \xrightarrow{k} P$$

the rate of reaction is $\frac{d[P]}{dt} = k[X]$. Two moles of X are mixed with one mole of Y to make 1.0 L of solution. At 50 s, 0.5 mole of Y is left in the reaction mixture. The correct statement(s) about the reaction is(are)

(Use: ln 2 = 0.693)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Adv. October 2021 | 03 October Paper-2

(A) The rate constant, k, of the reaction is 13.86×10^{-4} s⁻¹.

(B) Half-life of X is 50 s.

(C) At 50 s,
$$-\frac{d[X]}{dt} = 13.86 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$$
.

(D) At 100 s,
$$-\frac{d[Y]}{dt} = 3.46 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$$
.

Ans. (B)

(B), (C), (D)

Sol.

$$2X + Y \xrightarrow{k} P$$

2 1

After 50 sec

0.5

$$\frac{-d[X]}{2dt} = \frac{-d[Y]}{dt} = \frac{d[P]}{dt} = K[X]$$

Half life is 50 sec because concentration gets halved Since overall order is 1

$$T_{\frac{1}{2}} = \frac{0.693}{k_x}$$

$$k_x = \frac{0.693}{50} sec^{-1}$$

for
$$x = k = 2k$$

$$k = \frac{k_x}{2}$$

$$\frac{-d[X]}{dt} = 2 k(x)^{1}$$

$$=\frac{2\times0.693}{50\times2}\times1=13.86\times10^{-3}$$

at 100 sec

$$[X] = 0.5$$

$$-\frac{d[Y]}{dt} = K[X]^{1}$$

$$=\frac{0.693}{50\times2}\times0.5=3.46\times10^{-3}$$

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. October 2021 | 03 October Paper-2

4. Some standard electrode potentials at 298 K are given below:

 Pb^{2+}/Pb -0.13 V

 Ni^{2+}/Ni -0.24 V

 Cd^{2+}/Cd -0.40 V

 Fe^{2+}/Fe -0.44 V

To a solution containing 0.001 M of X^{2+} and 0.1 M of Y^{2+} , the metal rods X and Y are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of X. The correct combination(s) of X and Y, respectively, is(are)

(Given: Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$, Faraday constant, $F = 96500 \text{ C mol}^{-1}$)

(A) Cd and Ni

(B) Cd and Fe

(C) Ni and Pb

(D) Ni and Fe

Ans. (A), (B), (C)

Sol. For a spontaneous reaction in an electrochemical cell

$$X_{(s)} \longrightarrow X_{(aq)}^{2+} + 2e^{-}$$

$$Y_{(aq)}^{2+} + 2e^{-} \longrightarrow Y_{(S)}$$

$$E_{Cell} = E_{Cell}^{o} = \frac{-0.06}{2} log \frac{[X^{2+}]}{[Y^{2+}]}$$

$$= E_{\text{Cell}}^{\circ} \frac{-0.06}{2} \log \frac{0.001}{0.1}$$

$$= E_{\text{Cell}}^{\circ} + 0.06$$

$$E_{Cell} = +ve$$

$$E_{Cell}^{\circ} = E_{Ni^{2+}/Ni}^{\circ} - E_{Cd^{2+}/Cd}^{\circ}$$

$$=-0.24-(0.4)=0.16V$$

$$E_{cell} = E_{cell}^{\circ} + 0.06 = 0.22V$$

Likewise

Cd/Fe and Ni/Pb also form such Cell.

JEE Adv. October 2021 | 03 October Paper-2

5. The pair(s) of complexes wherein both exhibit tetrahedral geometry is(are)

(Note: py = pyridine

Given: Atomic numbers of Fe, Co, Ni and Cu are 26, 27, 28 and 29, respectively)

(A) $[FeCl_4]^-$ and $[Fe(CO)_4]^{2-}$

(B) $[Co(CO)_4]^-$ and $[CoCl_4]^{2-}$

(C) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$

(D) $[Cu(py)_{\alpha}]^+$ and $[Cu(CN)_{\alpha}]^{3-}$

Ans. (A), (B), (D)

Sol. (A) $[FeCl_{4}]^{-} \rightarrow Tetrahedral$

 $[Fe(CO)_4]^{2-} \rightarrow Tetrahedral$

(B) $[Co(CO)_4]^- \rightarrow Tetrahedral$

 $[CoCl_{\lambda}]^{2-} \rightarrow Tetrahedral$

(C) $[Ni(CO)_4] \rightarrow Tetrahedral$

 $[Ni(CN)_4]^{2-} \rightarrow square planar$

(D) $[Cu(py)_4]^+ \rightarrow Tetrahedral$

 $[Cu(CN)_4]^{3-} \rightarrow Tetrahedral$

6. The correct statement(s) related to oxoacids of phosphorous is(are)

(A) Upon heating, H₃PO₃ undergoes disproportionation reaction to produce H₃PO₄ and PH₃.

(B) While H₃PO₃ can act as reducing agent, H₃PO₄ cannot.

(C) H₃PO₃ is a monobasic acid.

(D) The H atom of P-H bond in H₃PO₃ is not ionizable in water.

Ans. (A), (B), (D)

Sol. (A) $H_3PO_3 \xrightarrow{\Delta} H_3PO_4 + PH_3$

(B) $HO \cap H$ ← Reducing Hydrogen

HOOL * Due to having reducing hydrogen H₃PO₃ can act as reducing agent.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. October 2021 | 03 October Paper-2

SECTION B

- This section contains **THREE** (03) question stems.
- There are **TWO (02)** questions corresponding to each question stem.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +2 If ONLY the correct numerical value is entered at the designated place;

Zero Marks: 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

At 298 K, the limiting molar conductivity of a weak monobasic acid is 4×10^2 S cm² mol⁻¹. At 298 K, for an aqueous solution of the acid the degree of dissociation is α and the molar conductivity is $\mathbf{y} \times 10^2$ S cm² mol⁻¹. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes $3\mathbf{y} \times 10^2$ S cm² mol⁻¹.

7. The value of α is ____.

Ans. 0.21 or 0.22

8. The value of y is ____.

Ans. 0.86

MATRIX JEE ACADEMY

JEE Adv. October 2021 | 03 October Paper-2

Sol.

 $\alpha = \frac{\wedge_m}{\wedge_m^o} = \frac{y \times 10^2}{4 \times 10^2} = \frac{y}{4}$

 $\alpha' =$ degree of dissociation after dilution

 $C' = \frac{C}{20}$ = new concentration.

HA ⇌

 H^{+} A^{-}

C

 $C - C\alpha$

 $C\alpha$

 $C\alpha$

K_a at C

K_a at C'

 $C\alpha^2$

 $\frac{1-\alpha}{1-\alpha}$

 $\frac{C'(\alpha')^2}{1-\alpha'}$

80 - 60y

36 - 9y

y = 0.86

=0.215

Question Stem for Question Nos. 9 and 10

Question Stem

Reaction of x g of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with y g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).

(Use Molar masses (in g mol⁻¹) of H, C, N, O, Cl and Sn as 1, 12, 14, 16, 35 and 119, respectively).

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. October 2021 | 03 October Paper-2

9. The value of \mathbf{x} is .

Ans. 3.57

10. The value of **y** is ____.

Ans. 1.23

Sol.
$$\operatorname{Sn} + \operatorname{HCl} \longrightarrow \operatorname{SnCl}_2$$

$$moles = \frac{x}{119}$$

moles of $SnCl_2$ formed = $\frac{x}{119}$ moles.

$$NO_2$$
 + $SnCl_2$ + $SnCl_4$

Valency factor = 6 Valency factor = 2 Valency factor = 6 equivalent of $SnCl_2$ = equivalent of salt formed

$$\Rightarrow \frac{x}{119} \times 2 = \frac{1.29}{129} \times 6$$

$$x = 3.57$$

equivalent of nitrobenzene = equivalent of SnCl₂

$$\frac{y}{123} \times 6 = \frac{3.57}{119} \times 2$$
$$y = 1.23$$

Question Stem for Question Nos. 11 and 12

Question Stem

A sample (5.6 g) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of 0.03 M KMnO₄ solution to reach the end point. Number of moles of Fe²⁺ present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of FeCl₂). The amount of iron present in the sample is \mathbf{y} % by weight.

(Assume: KMnO₄ reacts only with Fe²⁺ in the solution

Use: Molar mass of iron as 56 g mol⁻¹)

MATRIX JEE ACADEMY

JEE Adv. October 2021 | 03 October Paper-2

11. The value of x is ____.

Ans. 1.87 or 1.88

12. The value of **y** is ____.

Ans. 18.75

Sol. % purity of iron sample = y%

mass of in sample =
$$5.6 \times \frac{y}{100} g$$

Fe + HCl
$$\longrightarrow$$
 FeCl₂

$$moles = \frac{5.6y}{100 \times 56}$$

Molarity of
$$FeCl_2$$
 solution =
$$\frac{5.6y}{100 \times 56} \times 1000$$

Titration between FeCl, and KMnO₄,

$$KMnO_4 + FeCl_2 \longrightarrow Mn + Fe$$

Valency factor at equivalence point,

equivalent of $KMnO_4$ = equivalent of FeCl₂

$$\Rightarrow 0.03 \times \frac{12.5}{1000} \times 5 \qquad = \frac{5.6y}{100 \times 56} \times \frac{25}{250} \times 1$$

$$y = 18.75$$

$$x \times 10^{-2}$$
 = moles of Fe²⁺ in 250 ml solution
= moles of FeCl₂

$$= \frac{5.6 \times 18.75}{100 \times 56} = 0.01875 \implies x = 1.875$$

JEE Adv. October 2021 | 03 October Paper-2

SECTION - C

- This section contains **TWO (02) paragraphs**. Based on each paragraph, there are **TWO (02)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme:</u>

Full Marks: +3 If ONLY the correct option is chosen;

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks: -1 In all other cases.

Paragraph

The amount of energy required to break a bond is same as the amount of energy released when the same bond is formed. In gaseous state, the energy required for *homolytic cleavage* of a bond is called Bond Dissociation Energy (BDE) or Bond Strength. BDE is affected by *s*-character of the bond and the stability of the radicals formed. Shorter bonds are typically stronger bonds. BDEs for some bonds are given below:

$$H_{3}C - H(g) \longrightarrow H_{3}C (g) + H(g) \Delta H^{\circ} = 105 \text{ kcal mol}^{1}$$

$$Cl - Cl (g) \longrightarrow Cl(g) + Cl(g) \Delta H^{\circ} = 58 \text{ kcal mol}^{1}$$

$$H_{3}C - Cl (g) \longrightarrow H_{3}C (g) + Cl(g) \Delta H^{\circ} = 85 \text{ kcal mol}^{1}$$

$$H - Cl (g) \longrightarrow H(g) + Cl(g) \Delta H^{\circ} = 103 \text{ kcal mol}^{1}$$

Question Paper With Text Solution (Chemistry)

JEE Adv. October 2021 | 03 October Paper-2

13. Correct match of the **C**–**H** bonds (shown in bold) in Column **J** with their BDE in Column **K** is

Column J	Column K
Molecule	BDE (kcal mol ⁻¹)
(P) H–C H(CH ₃) ₂	(i) 132
(Q) H–C H ₂ Ph	(ii) 110
(R) H – C H=CH2	(iii) 95
(S) H–C ≡CH	(iv) 88

(A)
$$P - iii$$
, $Q - iv$, $R - ii$, $S - i$

(B)
$$P - i$$
, $Q - ii$, $R - iii$, $S - iv$

(C)
$$P - iii$$
, $Q - ii$, $R - i$, $S - iv$

(D)
$$P - ii$$
, $Q - i$, $R - iv$, $S - iii$

Ans. (A)

Sol. Greater the stability of radical formed, easier will be to break C – H bond.

Stability order \Rightarrow

$$\downarrow$$
 \downarrow \downarrow

Option (A)

14. For the following reaction

$$CH_4(g) + Cl_2(g) \xrightarrow{light} CH_2Cl + HCl$$

the correct statement is

- (A) Initiation step is exothermic with $\Delta H^{\circ} = -58 \text{ kcal mol}^{-1}$.
- (B) Propagation step involving •CH₃ formation is exothermic with

 $\Delta H^{\circ} = -2 \text{ kcal mol}^{-1}$.

(C) Propagation step involving CH₃Cl formation is endothermic with

 $\Delta H^{\circ} = +27 \text{ kcal mol}^{-1}$.

(D) The reaction is exothermic with $\Delta H^{\circ} = -25 \text{ kcal mol}^{-1}$.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Question Paper With Text Solution (Chemistry)

JEE Adv. October 2021 | 03 October Paper-2

Ans. (D)

Sol.
$$CH_4(g) + Cl_2(g) \xrightarrow{light} CH_3Cl(g) + HCl(g)$$

 $\Delta H_{rxn} = BDE(C-H) + BDE(Cl-Cl) - BDE(C-Cl) - BDE(H-Cl)$
 $= 105 + 58 - 85 - 103 = -25 \text{ kcal/mol}$

Initiation Step:

$$Cl - Cl \longrightarrow 2Cl$$

 $\Delta H^{\circ} = BDE (Cl - Cl)$
= 58 kcal/mol

Propagation Step:

$$CH_4 + \mathring{C}l \longrightarrow \mathring{C}H_3 + HCl$$

 $\Delta H^\circ = -BDE (H - Cl) + BDE (C - H)$
 $= -103 + 105$
 $= 2 \text{ kcal/mol}$
 $\mathring{C}H_3 + Cl - Cl \longrightarrow CH_3Cl + \mathring{C}l$
 $\Delta H^\circ = BDE (Cl - Cl) - B.D.E. (C - Cl)$
 $= 58 - 85$
 $= -27 \text{ kcal/mol}$

Paragraph

The reaction of $K_3[Fe(CN)_6]$ with freshly prepared $FeSO_4$ solution produces a dark blue precipitate called Turnbull's blue. Reaction of $K_4[Fe(CN)_6]$ with the $FeSO_4$ solution in complete absence of air produces a white precipitate X, which turns blue in air. Mixing the $FeSO_4$ solution with $NaNO_3$, followed by a slow addition of concentrated H_2SO_4 through the side of the test tube produces a brown ring.

- 15. Precipitate X is
 - (A) $\operatorname{Fe_4[Fe(CN)_6]_3}$

(B) Fe[Fe(CN)₆]

 $(C) K_2 Fe[Fe(CN)_6]$

(D) KFe[Fe(CN)₆]

Ans. (C)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Adv. October 2021 | 03 October Paper-2

Sol. $K_4[Fe(CN)_6] + FeSO_4$ $K_2Fe[Fe(CN)_6] \downarrow + K_2SO_4$ White PPT (\times)

- 16. Among the following, the brown ring is due to the formation of
 - (A) $[Fe(NO)_2(SO_4)_2]^{2-}$

(B) $[Fe(NO)_2(H_2O)_4]^{3+}$

 $(C) [Fe(NO)_4(SO_4)_5]$

(D) $[Fe(NO)(H_2O)_5]^{2+}$

Ans. (D)

Sol. $FeSO_4 + NaNO_3 + Conc. H_2SO_4 \rightarrow Fe_2(SO_4)_3 + NO + Na^+ + H_2O$ $NO + Fe^{+2}(aq) \rightarrow [Fe(NO) (H_2O)_5]^{+2}$ Brown ring complex

SECTION - D

- This section contains **THREE** (03) questions.
- The answer to each question is a **NON-NEGATIVE INTEGER**.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated <u>according to the following marking scheme:</u>

Full Marks: +4 If ONLY the correct integer is entered;

Zero Marks: 0 In all other cases.

17. One mole of an ideal gas at 900 K, undergoes two reversible processes, I followed by II, as shown below. If the work done by the gas in the two processes are same, the value of $\ln \frac{V_3}{V_2}$ is ____.

(U: internal energy, S: entropy, p: pressure, V: volume, R: gas constant)

MATRIX JEE ACADEMY

JEE Adv. October 2021 | 03 October Paper-2

(Given: molar heat capacity at constant volume, $C_{v,m}$ of the gas is $\frac{5}{2}$ R)

Ans. 10

Sol. Process $I \rightarrow$ adiabatic reversible

Work done
$$= \Delta U$$

$$(W_I)$$
 = $U_2 - U_1$
= $450 R - 2250 R = -1800 R$

also,
$$U_2 - U_1 = -1800 \text{ R}$$

$$\Rightarrow C_{v,m} (T_2 - T_1) = -1800 R$$

$$\Rightarrow \frac{5}{2} R(T_2 - 900) = -1800 R$$

$$T_2 = -\frac{1800 \times 2}{5} + 900$$

$$T_2 = 180 \text{ K}$$

Process II → Isothermal reversible process

Work done =
$$-nRT_2 ln \frac{V_3}{V_2}$$

$$(W_{II})$$

$$\Rightarrow W_{II} = W_{I} = -1 \times R \times T_{2} \times \ln \frac{V_{3}}{V_{2}}$$

$$\Rightarrow -1800 R = -R \times 180 \times \ln \frac{V_3}{V_2}$$

$$\Rightarrow \ln \frac{V_3}{V_2} = 10$$

18. Consider a helium (He) atom that absorbs a photon of wavelength 330 nm. The change in the velocity (in cm s^{-1}) of He atom after the photon absorption is ____.

(Assume: Momentum is conserved when photon is absorbed.

Use: Planck constant= $6.6 \times 10^{-34} \, \mathrm{J}$ s, Avogadro number = $6 \times 10^{23} \, \mathrm{mol^{-1}}$, Molar mass of He = 4 g mol⁻¹)

Ans. 30

Sol. Change in velocity $(\Delta V) = \frac{h}{m \cdot \lambda}$

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

JEE Adv. October 2021 | 03 October Paper-2

$$= \frac{6.6 \times 10^{-34} \text{Js}}{\left(\frac{4 \times 10^{-3} \text{kg/mole}}{6 \times 10^{23} / \text{mol}}\right) \times 330 \times 10^{-9} \text{m}}$$

$$\Delta V = 0.3 \text{ m/sec} = 30 \frac{\text{cm}}{\text{sec}}$$

- 19. Ozonolysis of ClO₂ produces an oxide of chlorine. The average oxidation state of chlorine in this oxide is ____.
- **Ans.** 6.00
- Sol. $ClO_2 + O_3 \longrightarrow ClO_3 + O_2 \longrightarrow$ average oxidation state of Cl = (+6)

