JEE Advanced 2020 Question Paper With Text Solutions PAPER-1

MATHEMATICS

JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

JEE Advanced 2020 | 27 Sep Paper-1

JEE ADVANCED SEP 2020 | 27 SEP PAPER-1

MATHS

SECTION-1 (Maximum Marks : 18)

- * This section contains FOUR (06) questions.
- * Each question has FOUR options ONLY ONE of these four options is the correct answer.
- * For each question, choose the correct option corresponding to the correct answer.
- * Answer to each question will be evaluated <u>according to the following marking scheme</u>:
 Full Marks : +3 If ONLY the correct option is chosen.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -1 In all other cases.

1. Suppose a, b denote the distinct real roots of the quadratic polynomial $x^2 + 20x - 2020$ and suppose c, d denote the distinct complex roots of the quadratic polynomial $x^2 - 20x + 2020$. Then the value of ac(a - c) + ad(a - d) + bc (b - c) + bd(b - d)

is :

(A) 0

(C) 8080

(D) 16000

Ans. (D)

Sol. $x^2 + 20x - 2020 = 0$ a, b are its roots $x^2 - 20x + 2020 = 0$ c,d are its roots a + b = -20ab = -2020c + d = 20cd = 2020E = ac (a - c) + ad (a - d) + bc (b - c) + bd (b - d) $= a^{2}c - ac^{2} + a^{2}d - ad^{2} + b^{2}c + b^{2}d - bd^{2}$ $= a^{2}(c + d) + b^{2}(c + d) - c^{2}(a + b) - d^{2}(a + b)$ $= (a^2 + b^2) (c + d) - (a + b) (c^2 + d^2)$ $= ((a + b)^2 - 2ab)(c + d) - (a + b)((c + d)^2 - 2cd)$ = (400 + 4040) (20) - (-20) (400 - 4040)= 88800 - 72800 = 16000

(B) 8000

Question Paper With Text Solution (Mathematics) JEE Advanced 2020 | 27 Sep Paper-1

2. If the function $f : \mathbf{R} \to \mathbf{R}$ is defined by $f(\mathbf{x}) = |\mathbf{x}|(\mathbf{x} - \sin \mathbf{x})$, then which of the following statements is TRUE?

(A) f is one-one, but NOT onto

MATRIX

- (B) f is onto, but NOT one-one
- (C) f is BOTH one-one and onto
- (D) f is NEITHER one-one NOR onto

Ans. (C)

 $f(x) \bigoplus_{x \in x} x(x - \sin x) \quad x \ge 0$ $(x - \sin x) \quad x < 0$ $\forall x \ge 0$ $f'(x) = 2x - (\sin x + x \cos x)$ $= (x - \sin x) + x (1 - \cos x) \ge 0$ f(x) is increasing $f(x))_{\min} = f(0) = 0$ $x \to \infty \Rightarrow f(x) \to \infty$

$$\Rightarrow \forall x \ge 0 \Rightarrow f(x) \in [0, \infty)$$
$$\forall x < 0$$

 \therefore f is odd \Rightarrow f (x) is also increasing

rangs of (x) for x < 0

 $f(x) \in (-\infty, 0)$

Range of $f(x) = (-\infty, \infty) \Rightarrow f(x)$ is into

f(x) is increasing $\forall x \in R \Rightarrow f$ is one – one

3. Let the functions $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined by

$$f(\mathbf{x}) = e^{\mathbf{x}-1} - e^{-|\mathbf{x}-1|}$$
 and $g(\mathbf{x}) = \frac{1}{2}(e^{\mathbf{x}-1} + e^{1-\mathbf{x}})$.

Then the area of the region in the first quadrant bounded by the curves y = f(x), y = g(x) and x = 0 is

(A)
$$(2-\sqrt{3})+\frac{1}{2}(e-e^{-1})$$

(B) $(2+\sqrt{3})+\frac{1}{2}(e-e^{-1})$
(C) $(2-\sqrt{3})+\frac{1}{2}(e+e^{-1})$
(D) $(2+\sqrt{3})+\frac{1}{2}(e+e^{-1})$

Ans. (A)

Sol. $f(x) \xrightarrow{e^{x-1} - e^{1-x}} x \ge 1$ $g(x) = \frac{1}{2} (e^{x-1} + e^{1-x})$ $(x) = \frac{1}{2} (e^{x-1} + e^{1-x})$

 $y^2 = 4\lambda x$, and suppose the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{1}{2}$ (C) $\frac{1}{3}$ (D) $\frac{2}{5}$

Ans. (A)

p (d, 2λ) slope of tangent at P m₁ = 1 for ellipse $w^2 = w^2$

$$\frac{x}{a^2} + \frac{y}{b^2} = 1$$
$$\frac{dy}{dx} = -\frac{xb^2}{ya^2}$$
$$m)_{(\lambda,2\lambda)} = -1$$
$$-\frac{\lambda b^2}{2\lambda a^2} = -1$$
$$\frac{b^2}{a^2} = 2$$

 \cdot ellipse is vertical

$$e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$$

5. Let C_1 and C_2 be two biased coins such that the probabilities of getting head in a single toss are 2/3 and 1/3, respectively. Suppose α is the number of heads that appear when C_1 is tossed twice, independently, and suppose β is the number of heads that appear when C_2 is tossed twice, independently. Then the probability that the roots of the quadratic polynomial $x^2 - \alpha x + \beta$ are real and equal, is

(A)
$$\frac{40}{81}$$
 (B) $\frac{20}{81}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$

Ans. (B)

Sol. $x^2 - \alpha x + \beta = 0$

$$\mathbf{D} = \mathbf{0}$$

$$\alpha^2 = 4\beta$$

(D) $\frac{\pi\sqrt{3}}{2}$

Required probability = $\frac{4}{81} + \frac{16}{81} = \frac{20}{81}$

6. Consider all rectangles lying in the region

$$\left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : 0 \le x \le \frac{\pi}{2} \text{ and } 0 \le y \le 2\sin(2x) \right\}$$

and having one side on the x-axis. The area of the rectangle which has the maximum perimeter among all such rectangles, is

(C) $\frac{\pi}{2\sqrt{3}}$

(A)
$$\frac{3\pi}{2}$$
 (B) π

Ans. (C)

The rectangle will be symmetric about $x = \frac{\pi}{4}$

A (x,
$$2 \sin 2x$$
)

$$AB = \frac{1}{2} - 2x = CD$$

 $AD = 2\sin 2x$

$$P = 4 \sin 2x + \pi - 4x$$

$$\frac{dP}{dx} = 8\cos 2x - 4 = 0$$

$$\cos 2x = \frac{1}{2} \implies 2\pi = \frac{\pi}{3} \implies x =$$
Area = $(2\sin 2x) \left(\frac{2\pi}{2} - 2x\right)$
Put $x = \frac{\pi}{6}$
Area $\Big|_{x=\frac{\pi}{6}} = 2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\pi}{2} - \frac{\pi}{3}\right)$

$$= \frac{\sqrt{3}\pi}{6} = \frac{\pi}{2\sqrt{3}}$$

SECTION-2 (Maximum Marks : 24)

- * This section contains **SIX** (06) questions.
- * Each question has **FOUR** options. ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- * For each question, choose the option(s) corresponding to (all) the correct answer(s).

 $\frac{\pi}{6}$

* Answer to each question will be evaluated according to the following marking scheme.

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen and both of which are correct.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks : -2 In all other cases.

Question Paper With Text Solution (Mathematics) JEE Advanced 2020 | 27 Sep Paper-1

7. Let the function $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 - x^2 + (x - 1) \sin x$ and let $g: \mathbb{R} \to \mathbb{R}$ be an arbitrary function. Let $f g: \mathbb{R} \to \mathbb{R}$ be the product function defined by (f g)(x) = f(x) g(x). Then which of the following statements is/are TRUE?

(A) If g is continuous at x = 1, then f g is differentiable at x = 1

(B) If f g is differentiable at x = 1, then g is continuous at x = 1

(C) If g is differentiable at x = 1, then f g is differentiable at x = 1

(D) If f g is differentiable at x =1, then g is differentiable at x =1

Ans. (A,C)

Sol. $f(x) = x^3 - x^2 + (x - 1) \sin(x)$

MATRIX

$$f(1) = 0$$

f is continous & differentiable

$$f'(1) = 1 + \sin 1$$

Let h(x) = f(x) g(x), h(1) = 0

Differentiability at x = 1

h' (1⁺) =
$$\lim_{h\to\infty} \frac{f(1+h)g(1+h)-0}{h}$$

= f' (1) g (1⁺)
h' (1⁻) = $\lim_{h\to\infty} \frac{f(1-h)g(1-h)-0}{-h}$
= f'(1) g(1⁻)
(A) If g is continuous at x = 1
 \Rightarrow g (1⁺) = g(1) = g (1⁻)
 \Rightarrow h' (1⁺) = h' (1⁻)
(B) If h' (1⁺) = h' (1⁻)
 \Rightarrow g (1⁺) = g (1⁻)
 \Rightarrow g (1⁺) = g (1⁻)
but g(1) can be different

Market Solution (Mathematics					
			JEE Advanced 2020 27 Sep Paper-1		
	(C) If g is differentiable at $x = 1$				
	\Rightarrow g is continuous at x = 1				
	from A we can say that C is true				
	(B) is false so (D) is also false				
8.	Let M b a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix.				
	If $M^{-1} = adj$ (adj M), then which of the following statements is / are ALWAYS TRUE ?				
	(A) $M = I$	(B) det M = 1	(C) $M^2 = I$	(D) $(adj M)^2 = I$	
Ans.	(B,C,D)				
Sol.	$M^{-1} = adj (adj (M))$				
	$\mathbf{M}^{-1} = \mathbf{M} \mathbf{M}$				
	$I = \mid M \mid M^2$	(1)			
	$\mid I \mid \; = \; \mid M \; M^2 $				
	$I = \mid M \mid^3 \mid M \mid^2$				
	$ \mathbf{M} ^{5} = 1 \implies \mathbf{M} = 1$	(2)			
	\Rightarrow Put in (1)				
	$M^2 = I \Longrightarrow M^{-1} = M$				
	$\frac{\mathrm{adj}(\mathrm{M})}{ \mathrm{M} } = \mathrm{M}$				
	adj(M) = M				

- \Rightarrow (adj (M))² = I
- 9. Let S be the set of all complex numbers z satisfying $|z^2 + z + 1| = 1$. Then which of the following statements is/are TRUE?

(A)
$$\left| z + \frac{1}{2} \right| \le \frac{1}{2}$$
 for all $z \in S$
(B) $\left| z \right| \le 2$ for all $z \in S$

(C)
$$\left|z + \frac{1}{2}\right| \ge \frac{1}{2}$$
 for all $z \in S$
(D) Then set S has exactly four elements
Ans. (B,C)
Sol. $\left|z^2 + z + 1\right| = 1$
 $z^2 + z + 1 = e^{i\theta}$
 $z = \frac{-1 \pm \sqrt{4}e^{i\theta} - 3}{2}$
 $z + \frac{1}{2} = \pm \frac{1}{2}\sqrt{(4\cos\theta - 3) + (4\sin\theta)i}$
 $\left|z + \frac{1}{2}\right| = \frac{1}{2}\left((4\cos\theta - 3)^2 + (4\sin\theta)^2\right)^{\frac{1}{4}}$
 $\left|z + \frac{1}{2}\right| = \frac{1}{2}\left(25 - 24\cos\theta\right)^{\frac{1}{4}}$
 $\left|z + \frac{1}{2}\right| \in \left[\frac{1}{2}, \frac{\sqrt{7}}{2}\right]$
 $\left|z + \frac{1}{2}\right| \le \frac{1}{2}$
 $2z = -1 \pm \sqrt{(4\cos\theta - 3) + (4\sin\theta)i}$
 $\left|2z\right| \le 1 + \sqrt{7}$ (triangle inequality)
 $\left|z\right| \le \frac{1 + \sqrt{7}}{2}$
 $\left|z\right| \le 2$

10. Let x, y and z be positive real numbers. Suppose x, y and z are the length of the sides of a triangle opposite to its angles X, Y and Z, respectively. If

$$\tan\frac{X}{2} + \tan\frac{Z}{2} = \frac{2y}{x + y + z}$$

then which of the following statements is/are TRUE?

(A)
$$2Y = X + Z$$

(B) $Y = X + Z$
(C) $\tan \frac{X}{2} = \frac{x}{y+z}$
(D) $x^2 + z^2 - y^2 = xz$
Ans. (B,C)
Sol. $\tan\left(\frac{X}{2}\right) + \tan\left(\frac{Z}{2}\right) = \frac{2y}{x+y+z}$
 $\frac{\Delta}{s(s-x)} + \frac{\Delta}{s(s-z)} = \frac{2y}{2s}$
 $\Delta\left(\frac{1}{s-x} + \frac{1}{s-z}\right) = y$
 $\frac{\Delta((s-z) + (s-x))}{(s-x)(s-z)} = y$
 $\frac{\Delta((s-z) + (s-x))}{(s-x)(s-z)} = y$
 $\cot\left(\frac{Y}{2}\right) = 1$
 $\frac{Y}{2} = \frac{\pi}{4} \Rightarrow Y = \frac{\pi}{2}$
 $\Rightarrow Y = X + Z = \frac{\pi}{2} \Rightarrow A \text{ is false / B is true}$
(c) $\tan\left(\frac{X}{2}\right) = \frac{x}{y+z}$
 $\frac{x}{sin(X)} = \frac{y}{sin(90^\circ)} = \frac{z}{sin(90^\circ - x)}$
RHS = $\frac{ysin(X)}{y+ycosX} = \frac{sin(X)}{1+cos(X)}$

$$= \tan\left(\frac{X}{2}\right) = LHS$$

(b) $x^2 + z^2 - y^2 = xz$
 $\frac{x^2 + z^2 - y^2}{2zx} = \frac{1}{2}$
 $\cos Y = \frac{1}{2} \implies Y = \frac{\pi}{3}$ D is false

11. Let L_1 and L_2 be the following straight lines.

$$L_1: \frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{3}$$
 and $L_2: \frac{x-1}{-3} = \frac{y}{-1} = \frac{z-1}{1}$

Suppose the straight line

$$L: \frac{x-\alpha}{l} = \frac{y-1}{m} = \frac{z-\gamma}{-2}$$

lies in the plane containing L_1 and L_2 , and passes through the point of intersection of L_1 and L_2 . If the line L bisects the acute angle between the lines L_1 and L_2 , then which of the following statements is/are TRUE?

(A) $\alpha - \gamma = 3$ (B) l + m = 2(C) $\alpha - \gamma = 1$ (D) l + m = 0

Ans. (A,B)

Page No. 12

$$\hat{p} + \hat{q} = \frac{1}{\sqrt{11}} (-2i - 2j + 4k)$$
DR's of L = -2, -2, 4
OR
= 1, 1, -2
L: $\frac{x - \alpha}{\ell} = \frac{y - 1}{m} = \frac{z - \gamma}{-2}$
 $\ell = 1$
m = 1
Passes through (1, 0, 1)
 $\frac{1 - \alpha}{1} = \frac{0 - 1}{1} = \frac{1 - \gamma}{-2}$
 $\alpha = 2$
 $\gamma = -1$
 $\alpha - \gamma = 3$ (A)

$$l + m = 2$$
 (B)

12. Which of the following inequalities is/are TRUE?

(A) $\int_{0}^{1} x \cos x \, dx \ge \frac{3}{8}$ (B) $\int_{0}^{1} x \sin x \, dx \ge \frac{3}{10}$ (C) $\int_{0}^{1} x^{2} \cos x \, dx \ge \frac{1}{2}$ (D) $\int_{0}^{1} x^{2} \sin x \, dx \ge \frac{2}{9}$

Ans. (A,B,D)

Sol. $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$ $\Rightarrow \cos x \ge 1 - \frac{x^2}{2}$ $(A) \int_0^1 x \cos dx \ge \int_0^1 x \left(1 - \frac{x^2}{2}\right) dx$

Question Paper With Text Solution (Mathematics)

JEE Advanced 2020 | 27 Sep Paper-1

SECTION-3 (Maximum Marks : 24)

- * This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- * For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places truncate/round-off the value to TWO decimal placed.
- * Answer to each question will be evaluated according to the following marking scheme :
 Full Marks : +4 If ONLY the correct numerical value is entered.

Zero Marks : 0 In all other cases.

MATRIX

13. Let m be the minimum possible value of $\log_3(3^{y_1} + 3^{y_2} + 3^{y_3})$, where y_1, y_2, y_3 are real numbers for which $y_1 + y_2 + y_3 = 9$. Let M be the maximum possible value of $(\log_3 x_1 + \log_3 x_2 + \log_3 x_3)$, where x_1, x_2, x_3 are positive real numbers for which $x_1 + x_2 + x_3 = 9$. Then the value of $\log_2(m^3) + \log_3(M^2)$ is _____

Sol.

$$\frac{3^{y_1} + 3^{y_2} + 3^{y_3}}{3} \ge \left(3^{y_1} 3^{y_2} 3^{y_3}\right)^{\frac{1}{3}} \\
3^{y_1} + 3^{y_2} + 3^{y_3} \ge 3\left(3^{\frac{y_1 + y_2 + y_3}{3}}\right) \\
3^{y_1} + 3^{y_2} + 3^{y_3} \ge 3^{4} \\
\log_3(3^{y_1} + 3^{y_2} + 3^{y_3}) \ge 4 \\
\Rightarrow m = 4 \\
\frac{x_1 + x_2 + x_3}{3} \ge \left(x_1 x_2 x_3\right)^{\frac{1}{3}} \\
3 \ge \left(x_1 x_2 x_3\right)^{\frac{1}{3}} \\
27 \ge x_1 x_2 x_3 \\
\log_3(27) \ge \log_3(x_1 x_2 x_3)$$

$$\Rightarrow$$
 M = 3

MATRIX

 $log_{2}(m^{3}) + log_{3}(M^{2}) = log_{2}(64) + log_{3}(9)$ = 6 + 2 = 8

14. Let $a_1, a_2, a_3,...$ be a sequence of positive integers in arithmetic progression with common difference 2. Also, let $b_1, b_2, b_3,...$ be a sequence of positive integers in geometric progression with common ratio 2. If $a_1 = b_1 = c$, then the number of all possible values of c, for which the equality $2(a_1 + a_2 + + a_n) = b_1 + b_2 + + b_n$

holds for some positive integer n, is _____

Ans. 1

Sol. 2 (sum of first n-terms of AP) = (sum of first n-terms of GP)

$$\Rightarrow 2\left(\frac{n}{2}[2c+(n-1)2]\right) = c \cdot \left(\frac{2^n-1}{2-1}\right)$$

 $\Rightarrow 2nc + 2n^2 - 2n = c2^n - c$

 $c = \frac{2n^2 - 2n}{2^n - 2n - 1} = Positive Integer (since a_i \& b_i are sequences of positive integers)$

Now for
$$n = 1$$
; $c = -4$
 $n = 2$; $c = -4$
 $n = 3$; $c = 12$
 $n = 4$; $c = \frac{24}{7}$
 $n = 5$; $c = \frac{40}{7}$

$$n = 6; c = \frac{60}{51}$$

And for all $n \ge 7$; c < 1So no integral value of c can be obtained further.

So only possible value of c = 12.

15. Let $f:[0,2] \to R$ be the function defined by

MATRIX

f (x) =
$$(3 - \sin(2\pi x)) \sin(\pi x - \frac{\pi}{4}) - \sin(3\pi x + \frac{\pi}{4}).$$

If α , $\beta \in [0, 2]$ are such that $\{x \in [0, 2] : f(x) \ge 0\} = [\alpha, \beta]$, then the value of $\beta - \alpha$ is ______

Ans. 1

Sol.
$$f(x) = (3 - \sin 2\pi x) \sin\left(\pi x - \frac{\pi}{4}\right) - \sin\left(3\pi x + \frac{\pi}{4}\right)$$
$$Let \pi x - \frac{\pi}{4} = \pi y \Rightarrow x = y + \frac{1}{4}$$
$$f(x) = \left(3 - \sin 2\pi \left(y + \frac{1}{4}\right)\right) \sin y \pi - \sin\left(3\pi \left(y + \frac{1}{4}\right) + \frac{\pi}{4}\right)$$
$$= \left(3 - \sin\left(2\pi y + \frac{\pi}{2}\right)\right) \sin y\pi - \sin\left(3\pi y + \frac{3\pi}{4} + \frac{\pi}{4}\right)$$
$$= (3 - \cos 2\pi y) \sin \pi y + \sin (3\pi y)$$
$$= (3 - (1 - 2\sin^2 \pi y)) \sin \pi y + 3\sin \pi y - 4\sin^3 \pi y$$
$$= 5\sin \pi y + 2\sin^3 \pi y = \sin \pi y (5 + 2\sin^2 \pi y)$$
Since $f(x) \ge 0 \sin \pi y \ge 0$
$$\Rightarrow \sin \pi \left(x - \frac{1}{4}\right) \ge 0 \Rightarrow \pi x - \frac{\pi}{4} \in [2n\pi, (2n + 1)\pi]$$

$$x \in [0, 2] \Rightarrow \pi x - \frac{\pi}{4} \in \left[-\frac{\pi}{4}, \frac{7\pi}{4}\right]$$

From both of these

 $\pi \mathbf{x} - \frac{\pi}{4} \in [0,\pi]$

$$\Rightarrow x \in \left[\frac{1}{4}, \frac{5}{4}\right]$$

So, $\alpha = \frac{1}{4}, \beta = \frac{5}{4}$
 $\beta - \alpha = \frac{5}{4} - \frac{1}{4} = 1$

16. In a triangle PQR, let $\vec{a} = \overrightarrow{QR}, \vec{b} = \overrightarrow{RP}$ and $\vec{c} = \overrightarrow{PQ}$. If

$$|\vec{a}| = 3$$
, $|\vec{b}| = 4$ and $\frac{\vec{a} \cdot (\vec{c} - \vec{b})}{\vec{c} \cdot (\vec{a} - \vec{b})} = \frac{|\vec{a}|}{|\vec{a}| + |\vec{b}|'}$

then the value of $|\vec{a} \times \vec{b}|^2$ is _____ 108

Sol. $\vec{a} = \vec{QR}, \vec{b} = \vec{RP}, \vec{c} = \vec{PQ}$

$$\Rightarrow \vec{a} + \vec{b} + \vec{c} = \vec{0}$$

$$\Rightarrow \vec{c} = -\vec{a} - \vec{b}$$

Replacing in the given equation,

$$\frac{\vec{a} \cdot \left(-\vec{a} - \vec{b} - \vec{b}\right)}{\left(-\vec{a} - \vec{b}\right) \cdot \left(\vec{a} - \vec{b}\right)} = \frac{\left|\vec{a}\right|}{\left|\vec{a}\right| + \left|\vec{b}\right|} = \frac{3}{3+4}$$

$$\Rightarrow \frac{\left|\vec{a}\right|^2 + 2\vec{a}\cdot\vec{b}}{\left|\vec{a}\right|^2 - \left|\vec{b}\right|^2} = \frac{3}{7}$$

$$\Rightarrow \frac{9+2\vec{a}\cdot\vec{b}}{9-16} = \frac{3}{7}$$

Now from Lagrange's Identity

$$\left| \vec{a} \times \vec{b} \right|^2 = \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 - \left(\vec{a} \cdot \vec{b} \right)^2$$

= 9×16-(-6)²
= 144-36=108

17. For a polynomial g(x) with real coefficients, let m_g denote the number of distinct real roots of g(x). Suppose S is the set of polynomials with real coefficients defined by

 $\mathbf{S} = \{ (x^2 - 1)^2 (a_0 + a_1 x + a_2 x^2 + a_3 x^3): a_0, a_1, a_2, a_3 \in \mathbf{R} \}.$

For a polynomial f, let f' and f'' denote its first and second order derivatives, respectively. Then the minimum possible value of $(m_{f'} + m_{f''})$, where $f \in S$, is _____

Ans. 5

Sol.
$$f(x) = (x^2 - 1)^2 (a_3 x^3 + a_2 x^2 + a_1 x + a_0)$$
$$f'(x) = 2(x^2 - 1) 2x (a_3 x^3 + a_2 x^2 + a_1 x + a_0) + (x^2 - 1)^2 (3a_3 x^2 + 2a_2 x + a_1)$$

 $= (x^{2} - 1) [4x (a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0}) + (x^{2} - 1) (3a_{3}x^{2} + 2a_{2}x + a_{1})]$

$$f'(1) = 0 = f'(-1)$$

MATRIX

Also, From Rolle's Theorem on f(x) in [-1, 1],

$$f(-1) = 0 = f(1)$$

and f(x) is a polynomial function, so it is continuous and differentiable

 \Rightarrow There exists at least one c between -1 and 1 such that f' (c) = 0

```
So f'(x) has at least 3 roots : -1, c, 1
```

So
$$m_{f} = 3$$

From Rolle's Theorem, between two roots of f', at least one root of f' will lie.

 \Rightarrow minimum no. of roots of f'' = 2.

So
$$m_{f} = 2$$

 $Min (m_{f'} + m_{p'}) = 3 + 2 = 5$

18. Let e denote the base of the natural logarithm. The value of the real number a for which the right hand

limit $\lim_{x \to 0^+} \frac{(1-x)^{\frac{1}{x}} - e^{-1}}{x^a}$ is equal to a nonzero real number, is _____

Ans. 1

 $\lim_{x \to 0^+} \frac{(1-x)^{\frac{1}{x}} - e^{-1}}{\mathbf{v}^a} \neq 0$ Sol. $\lim_{x \to 0^+} \frac{e^{\frac{1}{x} ln(1-x)} - e^{-1}}{\mathbf{v}^a} \neq 0$ $\lim_{x \to 0^+} \frac{e^{-1} (e^{1 + \frac{1}{x} ln(1-x)} - 1)}{\mathbf{v}^a} \neq 0$ $\lim_{x \to 0^+} \frac{1 + \frac{1}{x} ln(1 - x)}{ex^a} \neq 0$ $\lim_{x\to 0^+} \frac{x+ln(1-x)}{e^{x^{a+1}}} \neq 0$ $\lim_{x \to 0^+} \frac{x + \left(-x - \frac{x^2}{2} \dots\right)}{ex^{a+1}} \neq 0$ \Rightarrow a + 1 = 2 $\Rightarrow a = 1$ if $a < 1 \Rightarrow \lim_{x \to 0^+} \frac{x + \left(-x - \frac{x^2}{2} \dots\right)}{x - \frac{a+1}{2}} = 0$ if $a > 1 \lim_{x \to 0^+} \frac{x + \left(-x - \frac{x^2}{2} \dots\right)}{2} = DNE$