JEE Main April 2025 Question Paper With Text Solution 08 April | Shift-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN APRIL 2025 | 08TH APRIL SHIFT-2

SECTION - A

51.
$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

The freezing point depression of a 0.1 m aqueous solution of a monobasic weak acid HA is 0.20 °C. The dissociation constant for the acid is

Given: $K_f(H_2O) = 1.8 \text{K kg mol}^{-1}$, molality = molarity

$$(1) 1.1 \times 10^{-2}$$

(2)
$$1.38 \times 10^{-3}$$
 (3) 1.89×10^{-1} (4) 1.90×10^{-3}

$$(3) 1.89 \times 10^{-1}$$

$$(4) 1.90 \times 10^{-3}$$

Question ID: 3475772540

Ans. Official answer NTA(2)

Sol.

$$52. \qquad A \xrightarrow{\text{(i)NaOH}} B \xrightarrow{\text{(i)EtOH}} C$$

'A' shows positive Lassaign's test for N and its molar mass is 121

'B' gives effervescence with aq NaHCO₃.

'C'gives fruity smell.

Identify A,B and C from the following.

(1)
$$A = \bigcirc$$
 , $B = \bigcirc$, CO_2H CO_2Et

(4)
$$A = \bigcirc$$

$$(A = \bigcirc$$

$$A = \bigcirc$$

Question ID: 3475772556

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

Official answer NTA(1) Ans.

Sol.

- 53. Correct statements for an element with atomic number 9 are
 - A. There can be 5 electrons for which $m_s = +\frac{1}{2}$ and 4 electrons for which $m_s = -\frac{1}{2}$
 - B. There is only one electron in p₂ orbital.
 - C. The last electron goes to orbital with n = 2 and l = 1.
 - D. The sum of angular nodes of all the atomic orbitals is 1.

Choose the correct answer from the options given below:

- (1) A, C and D Only (2) A and B Only
- (3) C and D Only
- (4) A and C Only

Question ID: 3475772538

Official answer NTA(4) Ans.

Sol.

The number of species from the following that are involved in sp^3d^2 hybridization is 54.

$$\left[\text{Co(NH}_3)_6 \right]^{3+}, \text{SF}_6, \left[\text{CrF}_6 \right]^{3-}, \left[\text{CoF}_6 \right]^{3-}, \left[\text{Mn(CN)}_6 \right]^{3-} \text{ and } \left[\text{MnCl}_6 \right]^{3-}$$

- (1)6
- (2) 5
- (3)4
- (4)3

Question ID: 3475772542

Official answer NTA(3) Ans.

Sol.

- 55. In a first order decomposition reaction, the time taken for the decomposition of reactant to one fourth and one eighth of its initial concentration are t_1 and t_2 (s), respectively. The ratio t_1/t_2 will be:
 - $(1)\frac{3}{2}$
- (2) $\frac{3}{4}$
- $(3)\frac{2}{3}$

Question ID: 3475772541

Official answer NTA(3) Ans.

Sol.

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

56. Match the LIST-I with LIST-II

LIST-II LIST-II

(Reagent) (Functional Group detected)

A. Sodium bicarbonate solution I. double bond unsaturation

B. Neutral ferric chloride II. carboxylic acid

C. ceric ammonium nitrate III. phenolic - OH

D. alkaline KMnO₄ IV. alcoholic - OH

Choose the correct answer from the options given below:

(1) A-II, B-III, C-I, D-IV

(2) A-III, B-II, C-IV, D-I

(3) A-II, B-IV, C-III, D-I

(4) A-II, B-III, C-IV, D-I

Question ID: 3475772548

Ans. Official answer NTA(4)

Sol.

57. The atomic number of the element from the following with lowest 1st ionisation enthalpy is:

- (1)32
- (2)35
- (3)87
- (4) 19

Question ID: 3475772543

Ans. Official answer NTA(3)

Sol.

The correct decreasing order of spin only magnetic moment values (BM) of Cu^+ , Cu^{2+} , Cr^{2+} and Cr^{3+} ions is:

(1)
$$Cr^{3+} > Cr^{2+} > Cu^{+} > Cu^{2+}$$

(2)
$$Cu^+ > Cu^{2+} > Cr^{3+} > Cr^{2+}$$

(3)
$$Cr^{2+} > Cr^{3+} > Cu^{2+} > Cu^{+}$$

(4)
$$Cu^{2+} > Cu^{+} > Cr^{2+} > Cr^{3+}$$

Question ID: 3475772545

Ans. Official answer NTA(3)

Sol.

59. Which one of the following reactions will not lead to the desired ether formation in major proportion?

 $(iso-Bu \Rightarrow isobutyl, sec-Bu \Rightarrow sec-butyl, nPr \Rightarrow n-propyl, {}^{t}Bu \Rightarrow tert-butyl, Et \Rightarrow ethyl)$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

$$(1) \bigcirc \longrightarrow O^{-} \stackrel{+}{Na} + CH_{3}Br \rightarrow \bigcirc \longrightarrow O - CH_{3}$$

(2)
$$\stackrel{+}{\text{Na O}} \stackrel{-}{\longleftarrow} + n - Pr Br \rightarrow n - Pr - O \stackrel{-}{\longleftarrow}$$

$$(3)$$
 iso-Bu $\overset{-}{O}$ Na+sec-BuBr \rightarrow sec-Bu-O-iso-Bu

$$^{(4)}$$
 ^tBu $\overset{-}{O}$ Na+EtBr \rightarrow ^tBu - O - Et

Question ID: 3475772554

Ans. Official answer NTA(3)

Sol.

60. What is the correct IUPAC name of

- (1) 4-Ethylcyclopent-2-en-1-ol
- (3) 1-Ethyl-3-hydroxycyclopent-2-ene
- (2) 1-Ethylcyclopent-2-en-3-ol
- (4) 4-Ethyl-1-hydroxycyclopent-2-ene

Question ID: 3475772550

Ans. Official answer NTA(1)

Sol.

61. Choose the correct set of reagents for the following conversion.

- (1) Cl_2 / Fe; Br_2 / anhy.AlCl_3 ; aq.KOH
- (2) Br₂ / anhy.AlCl₃; Cl₂, Δ ; aq.KOH
- (3) Cl₂ / anhy.AlCl₃; Br₂ / Fe; alc.KOH
- (4) $\operatorname{Br}_2 / \operatorname{Fe}; \operatorname{Cl}_2, \Delta; \operatorname{alc.KOH}$

Question ID: 3475772553

Ans. Official answer NTA (4)

Sol.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

62. Match the LIST-I with LIST-II

LIST-I

LIST-II

A. Carbocation

I. Species that can supply a pair of electrons.

B. C-Free radical

II. Species that can receive a pair of electrons.

C. Nucleophile

III. sp² hybridized carbon with empty p-orbital.

D. Electrophile

IV. sp²/sp³ hybridized carbon with one unpaired electron.

Choose the correct answer from the options given below:

(1) A-III, B-IV, C-II, D-I

(2) A-III, B-IV, C-I, D-II

(3) A-II, B-III, C-I, D-IV

(4) A-IV, B-II, C-III, D-I

Question ID: 3475772551

Ans. Official answer NTA(2)

Sol.

undergoes intramolecular aldol condensation, the major product

formed is:

$$(3) \qquad H \qquad (4) \qquad O$$

Question ID: 3475772555

Ans. Official answer NTA(4)

Sol.

On combustion 0.210 g of an organic compound containing C,H and O gave 0.127 gH₂ O and 0.307 g CO₂.

The percentages of hydrogen and oxygen in the given organic compound respectively are:

(1)6.72,39.87

(2) 7.55,43.85

0

(3) 53.41,39.6

(4) 6.72,53.41

Question ID: 3475772549

Ans. Official answer NTA (4)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

Choose the correct option for structures of A and B, respectively

(1)
$$H_3 \stackrel{+}{N} - CH - COO \atop I \atop CH(CH_3)_2$$
 and $H_3 \stackrel{+}{N} - CH - COOH \atop CH(CH_3)_2$

(2)
$$\begin{array}{ccc} H_2N-CH-CO\overset{-}{O} \\ I \\ CH(CH_3)_2 \end{array}$$
 and $\begin{array}{ccc} H_3\overset{+}{N}-CH-COOH \\ CH(CH_3)_2 \end{array}$

(3)
$$H_3$$
 $\stackrel{+}{N}$ - CH - COOH and H_2 $\stackrel{-}{N}$ - CH - COO CH(CH₃)₂

(4)
$$\begin{array}{c} H_2N-CH-CO\overset{\odot}{O} \\ I\\ CH(CH_3)_2 \end{array}$$
 and $\begin{array}{c} H_3\overset{+}{N}-CH-CO\overset{-}{O} \\ CH(CH_3)_2 \end{array}$

Question ID: 3475772557

Ans. Official answer NTA(3)

Sol.

66. Given below are two statements:

Statement I : H_2 Se is more acidic than H_2 Te

Statement II: H,Se has higher bond enthalpy for dissociation than H, Te

In the light of the above statements, choose the correct answer from the options given below

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true

Question ID: 3475772544

Ans. Official answer NTA(3)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

67. Match the LIST-I with LIST-II

LIST-I

LIST-II

(Complex/Species)

(Shape & magnetic moment)

A. [Ni(CO),]

I. Tetrahedral, 2.8 BM

B. [Ni(CN),]2-

II. Square planar, 0 BM

C. [NiCl,]2-

III. Tetrahedral, 0 BM

D. [MnBr₄]²⁻

IV. Tetrahedral, 5.9 BM

Choose the correct answer from the options given below:

(1) A-I, B-II, C-III, D-IV

(2) A-III, B-IV, C-II, D-I

(3) A-IV, B-I, C-III, D-II

(4) A-III, B-II, C-I, D-IV

Question ID: 3475772547

Ans. Official answer NTA(4)

Sol.

68. Which of the following binary mixture does not show the behaviour of minimum boiling azeotropes?

(1) $CS_2 + CH_3COCH_3$

(2) CH₃OH + CHCl₃

(3) $C_6H_5OH + C_6H_5NH_2$

(4) $H_2O + CH_3COC_2H_5$

Question ID: 3475772539

Ans. Official answer NTA(3)

Sol.

69. Given below are two statements:

Statement I: A homoleptic octahedral complex, formed using monodentate ligands, will not show stereoisomerism Statement II: cis- and trans - platin are heteroleptic complexes of Pd.

In the light of the above statements, choose the correct answer from the options given below

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true

Question ID: 3475772546

Ans. Official answer NTA(1)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

Sol.

70. 1,2-dibromocyclooctane _

(iii) Hg²⁺/H⁺

(iv) Zn-Hg/H⁺

Question ID: 3475772552

Ans. Official answer NTA(1)

Sol.

SECTION - B

71. 20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution.

The molarity of the sodium iodide solution is _____ M. (Nearest Integer value)

(Given: Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol⁻¹)

Question ID: 3475772558

Ans. Official answer NTA(1)

Sol.

72. The energy of an electron in first Bohr orbit of H-atom is –13.6 eV. The magnitude of energy value of electron

in the first excited state of Be³⁺ is ______eV (nearest integer value)

Question ID: 3475772559

Ans. Official answer NTA (54)

Sol.

73. Resonance in X_2Y can be represented as

$$\ddot{\ddot{X}} = \ddot{X} = \ddot{\ddot{Y}} \iff \ddot{X} \equiv \ddot{X} - \ddot{\ddot{Y}}$$
:

The enthalpy of formation of $X_2Y \left(X \equiv X(g) + \frac{1}{2}Y = Y(g) \rightarrow X_2Y(g) \right)$ is 80 kJ mol⁻¹. The magnitude of

resonance energy of X₂ Y is _____kJ mol⁻¹ (nearest integer value)

Given : Bond energies of $X \equiv X$, X = X, Y = Y and X = Y are 940, 410, 500 and 602 kJ mol⁻¹ respectively.

valence X:3,Y:2

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Chemistry)

JEE Main April 2025 | 08 April Shift-2

Question ID: 3475772560

Ans. Official answer NTA (98)

Sol.

74. The equilibrium constant for decomposition of H₂O(g)

$$H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g)(\Delta G^{\circ} = 92.34 \text{kJ mol}^{-1})$$

is 8.0×10^{-3} at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation (α) of water is _____ $\times 10^{-2}$ (nearest integer value).

[Assume α is negligible with respect to 1]

Question ID: 3475772561

Ans. Official answer NTA(5)

Sol.

75. Consider the following half cell reaction

$$Cr_2O_7^{2-}(aq) + 6e^- + 14H^+(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(1)$$

The reaction was conducted with the ratio of $\frac{\left[Cr^{3+}\right]^2}{\left[Cr_2O_7^{2-}\right]} = 10^{-6}$. The pH value at which the EMF of the half cell

will become zero is ______. (nearest integer value)

[Given : standard half cell reduction potential $E^0_{\text{Cr}_2\text{O}_7^{2-}\cdot\text{H}^+/\text{Cr}^{3+}} = 1.33\,\text{V}, \frac{2.303RT}{F} = 0.059\,\text{V}.$

Question ID: 3475772562

Ans. Official answer NTA(10)

Sol.