JEE Main January 2024 Question Paper With Text Solution 27 January | Shift-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

1. Given below are two statements:

Statement (I): Oxygen being the first member of group 16 exhibits only –2 oxidation state.

Statement (II): Down the group 16 stability of +4 oxidation state decreases and +6 oxidation state increases.

In the light of the above statements, choose the most appropriate answer from the options given below:

(1) Statement I is incorrect but Statement II is correct

(2) Both Statement I and Statement II are incorrect

(3) Both Statement I and Statement II are correct

(4) Statement I is correct but Statement II is incorrect

Question ID: 533543532

Ans. Official Answer NTA(2)

Sol.

2. The quantity which changes with temperature is:

- (1) Molarity
- (2) Molality
- (3) Mole fraction
- (4) Mass percentage

Question ID: 533543529

Ans. Official Answer NTA(1)

Sol.

3. Which structure of protein remains intact after coagulation of egg white on boiling?

- (1) Primary
- (2) Quaternary
- (3) Secondary
- (4) Tertiary

Question ID: 533543545

Ans. Official Answer NTA(1)

Sol.

4. The order of relative stability of the contributing structure is:

$$CH_{2} = CH - C - H \longleftrightarrow CH_{2} - CH = C - H$$

$$\downarrow O : \Theta$$

$$CH_{2} - CH = C - H$$

$$\downarrow O : \Theta$$

$$\downarrow O : \Theta$$

$$\downarrow CH_{2} - CH = C - H$$

$$\downarrow O : \Theta$$

$$\downarrow CH_{2} - CH = C - H$$

$$\downarrow O : \Theta$$

Choose the **correct** answer from the options given below:

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

(1)
$$I = II = III$$

(2)
$$III > II > I$$

$$(4) II > I > III$$

Question ID: 533543537

Ans. Official Answer NTA(3)

Sol.

5. The final product A, formed in the following reaction sequence is:

$$Ph-CH=CH_{2} \xrightarrow{\begin{array}{c} (i)BH_{3} \\ (ii)H_{2}O_{2}, {}^{\Theta}OH \\ \hline (iii)HBr \\ (iv)Mg, ether, then HCHO/H_{3}O^{+} \end{array}} A$$

(1)
$$Ph - CH_2 - CH_2 - CH_3$$

(2)
$$Ph - CH_2 - CH_2 - CH_2 - OH$$

$$(3) \begin{array}{c} Ph-CH-CH_3 \\ | \\ CH_2OH \end{array}$$

Question ID: 533543541

Ans. Official Answer NTA(2)

Sol.

6. Major product formed in the following reaction is a mixture of:

Question ID: 533543542

Ans. Official Answer NTA (4)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

7. Identify from the following species in which d²sp³ hybridization is shown by central atom:

- (1) SF₆
- (2) BrF₅
- (3) $[Pt(Cl_{\Delta})]^{2-}$
- $(4) [Co(NH_3)_6]^{3+}$

Question ID: 533543528

Ans. Official Answer NTA(4)

Sol.

- 8. Which of the following statements is not correct about rusting of iron?
 - (1) Rusting of iron is envisaged as setting up of electrochemical cell on the surface of iron object.
 - (2) Coating of iron surface by tin prevents rusting, even if the tin coating is peeling off.
 - (3) When pH lies above 9 or 10, rusting of iron does not take place.
 - (4) Dissolved acidis oxides SO₂, NO₂ in water act as catalyst in the process of rusting.

Question ID: 533543530

Ans. Official Answer NTA(2)

Sol.

9. Identify B formed in the reaction.

$$Cl - (CH_2)_4 - Cl \xrightarrow{excess NH_3} A \xrightarrow{NaOH} B + H_2O + NaCl$$

(2)
$$H_2N - (CH_2)_4 - NH_2$$

(4)
$$Cl_{N}^{+}H_{3} - (CH_{2})_{4} - NH_{3}Cl_{3}^{-}$$

Question ID: 533543544

Ans. Official Answer NTA(2)

Sol.

10. Which of the following cannot function as an oxidising agent?

(1) SO_4^{2-}

 $(2) \text{ MnO}_4^-$

 $(3) N^{3-}$

 $(4) BrO_3^-$

Question ID: 533543531

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

Ans. Official Answer NTA(3)

Sol.

- 11. Identity the incorrect pair from the following:
 - (1) Photography AgBr

(2) Wacker process - Pt Cl,

(3) Haber process - Iron

(4) Polythene preparation - TiCl₄, Al(CH₃)₃

Question ID: 533543533

Ans. Official Answer NTA (2)

Sol.

12. Which among the following halide / s will not show $S_N 1$ reaction:

$$(A) H_2C = CH - CH_2C1$$

$$(B) CH_3 - CH = CH - C1$$

$$(D)$$
 H_3 $CH - C$

Choose the **most appropriate** answer from the options given below:

(1)(B) and (C) only

(2)(A),(B) and (D) only

(3)(B) only

(4) (A) and (B) only

Question ID: 533543540

Ans. Official Answer NTA (3)

Sol.

13. Given below are two statments:

Statement (I): In the Lanthanoids, the formation Ce^{+4} is favoured by its noble gas configuration.

Statement (II): Ce^{+4} is a strong oxidant reverting to the common +3 state.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) statement I is false but statment II is true
- (2) both statement I and statment II are true
- (3) statement I is true but statement II is false
- (4) both statement I and statment II are false

Question ID: 533543534

Ans. Official Answer NTA (2)

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

The molecular formula of second homologue in the homologous series of mono carboxylic acids is 14.

- $(1) C_{2}H_{4}O_{3}$
- $(2) C_3H_6O_2$
- $(3) C_{2}H_{2}O_{2}$
- (4) CH₂O

Question ID: 533543535

Official Answer NTA(1) Ans.

Sol.

15. Bond line formula of HOCH(CN), is:

(2) HO-CH
$$\stackrel{\text{CN}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}{\stackrel{\text{CN}}}\stackrel{\text{CN}}$$

(1)
$$C - CN$$
 (2) $O - CH = N$ (3) $O - CH = N$ (4) $O - CH = N$ (4) $O - CH = N$ (5) $O - CH = N$ (6) $O - CH = N$ (7) $O - CH = N$ (8) $O - CH = N$ (9) $O - CH = N$ (1) $O - CH = N$ (1) $O - CH = N$ (2) $O - CH = N$ (3) $O - CH = N$ (4) $O - CH = N$ (4) $O - CH = N$ (5) $O - CH = N$ (6) $O - CH = N$ (7) $O - CH = N$ (8) $O - CH = N$ (9) $O - CH = N$ (1) $O - CH = N$ (2) $O - CH = N$ (3) $O - CH = N$ (4) $O - CH = N$ (1) $O - CH = N$ (1) $O - CH = N$ (2) $O - CH = N$ (3) $O - CH = N$ (4) $O - CH = N$ (1) $O - CH = N$ (2) $O - CH = N$ (3) $O - CH = N$ (4) $O - CH = N$ (4) $O - CH = N$ (1) $O - CH = N$ (2) $O - CH = N$ (3) $O - CH = N$ (4) $O - CH = N$ (1) $O - CH = N$ (2) $O - CH = N$ (2) $O - CH = N$ (2) $O - CH = N$ (3) $O - CH = N$ (4) $O - CH = N$ (4) $O - CH = N$ (1) $O - CH = N$ (2) $O - CH = N$ (3) $O - CH = N$ (4) $O -$

Question ID: 533543536

Official Answer NTA (4) Ans.

Sol.

16. The technique used for purification of steam volatile water immiscible substance is:

(1) fractional distillation under reduced pressure (2) fractional distillation

(3) distillation

(4) steam distillation

Question ID: 533543538

Official Answer NTA (4) Ans.

Sol.

17. Choose the correct option having all the elements with d¹⁰ electronic configuration from the following:

(1) ²⁸Ni, ²⁴Cr, ²⁶Fe, ²⁹Cu

(2) ²⁷Co, ²⁸Ni, ²⁶Fe, ²⁴Cr

(3) ²⁹Cu, ³⁰Zn, ⁴⁸Cd, ⁴⁷Ag

(4) ⁴⁶Pd, ²⁸Ni, ²⁶Fe, ²⁴Cr

Question ID: 533543527

Ans. Official Answer NTA(3)

Sol.

18. The incorrect statment regarding conformations of ethane is:

- (1) The dihedral angle in staggered conformation is 60°.
- (2) Ethane has infinite number of conformations.
- (3) Eclipsed conformation is the most stable conformation.
- (4) The conformations of ethane are inter convertible to one-another.

Question ID: 533543539

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

Ans. Official Answer NTA(3)

Sol.

19. Phenolic group can be identified by a positive:

(1) Carbylamine test (2) Lucas test

(3) Phthalein dye test (4) Tollen's test

Question ID: 533543546

Ans. Official Answer NTA(3)

Sol.

20. Match List - I with List - II.

List - I (Reaction)

List-II (Reagent (s))

(I) Na₂Cr₂O₇,H₂SO₄

(II) (i) NaOH (ii) CH₃Cl

(III) (i) NaOH, CHCl₃, (ii) NaOH (iii) HCl

(IV) (i) NaOH, (ii) CO₂, (iii) HCl

Choose the **correct** answer, from the options given below:

 $(1)\,(A)\text{-}(IV),(B)\text{-}(III),(C)\text{-}(I),(D)\text{-}(II)$

(2)(A)-(II),(B)-(III),(C)-(I),(D)-(IV)

(3)(A)-(II),(B)-(I),(C)-(III),(D)-(II)

(4)(A)-(IV),(B)-(I),(C)-(III),(D)-(II)

Question ID: 533543543

Ans. Official Answer NTA(1)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

Sol.

21. The number of non-polar molecules from the following is _____.

HF, H₂O, SO₂, H₂, CO₂, CH₄, NH₃, HCl, CHCl₃, BF₃

Question ID: 533543548

Ans. Official Answer NTA (4)

Sol.

22. The hydrogen electrode is dipped in a solution of pH = 3 at 25°C. The potential of the electrode will be –

 $\times 10^{-2}$ V.

Question ID: 533543550

Ans. Official Answer NTA (18)

Sol.

23. Total number of ions from the following with noble gas configuration is

$$Sr^{2+}(z=38)$$
, $Cs^{+}(z=55)$, $La^{2+}(z=57)$, $Pb^{2+}(z=82)$, $Yb^{2+}(z=70)$ and $Fe^{2+}(z=26)$

Question ID: 533543552

Ans. Official Answer NTA(3)

Sol.

24. Volume of 3 M NaOH (formula weight 40 g mol⁻¹) which can be prepared from 84g of NaOH is

 10^{-1} dm^3 .

Question ID: 533543547

Ans. Official Answer NTA(7)

Sol.

25. Total number of compounds with Chiral carbon atoms from following is . .

$$CH_3 - CH_2 - CH(NO_2) - COOH$$

$$CH_3 - CH_2 - CHBr - CH_2 - CH_3$$

$$CH_3 - CH(I) - CH_2 - NO_2$$

$$CH_3 - CH_2 - CH(OH) - CH_2OH$$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main January 2024 | 27 January Shift-2

$$CH_3 - CH - CH(I) - CH_2H_5$$

Question ID: 533543555

Ans. Official Answer NTA (5)

Sol.

26. Time required for completion of 99.9% of a First order reaction is ______ times of half life $(t_{1/2})$ of the reaction.

Question ID: 533543551

Ans. Official Answer NTA (10)

Sol.

9.3 g of aniline is subjected to reaction with excess of acetic anhydride to prepare acetanilide. The mass of acetanilide produced if the reaction is 100% completed is $___$ × 10⁻¹ g.

Question ID: 533543556

Ans. Official Answer NTA (135)

Sol.

28. The Spin only magnetic moment value of square planar complex [Pt(NH₃)₂Cl(NH₂CH₃)]Cl is _____B.M. (Nearest integer)

(Given atomic number for Pt = 78)

Question ID: 533543554

Ans. Official Answer NTA (0)

Sol.

29. 1 mole of PbS is oxidised by "X" moles of O_3 to get "Y" moles of O_2 . X + Y =_____.

Question ID: 533543553

Ans. Official Answer NTA (8)

Sol.

30. For a certain thermochemical reaction M \rightarrow N at T = 400 K, ΔH^{Θ} = 77.2 kJ mol⁻¹, ΔS = 122 JK⁻¹, log equilibrium constant (log K) is - ____ × 10⁻¹.

Question ID: 533543549

Ans. Official Answer NTA (37)

Sol.

MATRIX JEE ACADEMY