JEE Main July 2021 Question Paper With Text Solution 27 July. | Shift-1

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

Question Paper With Text Solution (Chemistry)

JEE Main July 2021 | 27 July Shift-1

JEE MAIN JULY 2021 | 27TH JULY SHIFT-1

SECTION – A

- 1. The statement that is INCORRECT about Ellingham diagram is :
 - (1) provides idea about changes in the phases during the reaction.
 - (2) provides idea about the reaction rate.
 - (3) provides idea about reduction of metal oxide.
 - (4) provides idea about free energy change.
- Ans. Official Answer NTA (2)
- Sol. Ellingham diagram does not give idea about rate of Reaction
- 2. The product obtained from the electrolytic oxidation of acidified sulphate solutions, is :
 - (1) HO₃SOOSO₃H
 - (2) HO₂SOSO₂H
 - (3) HSO₄⁻
 - (4) HO₃SOSO₃H
- Ans. Official Answer NTA (1)
- Sol. Electrolysis of concentrated solution of acidified solution yields $H_2S_2O_8$.
- 3. The oxidation states of 'P' in $H_4P_2O_7$, $H_4P_2O_5$ and $H_4P_2O_6$, respectively, are :
 - (1) 7, 5 and 6
 - (2) 5, 3 and 4
 - (3) 5, 4 and 3
 - (4) 6, 4 and 5
- Ans. Official Answer NTA (2)

oxidation state of P = +3

(3)
$$H_4P_2O_6 \rightarrow \qquad \begin{array}{c} O & O \\ H_4P & -+4P & -+4P \\ OH & OH & OH \\ OH & OH \\ OH & OH \end{array}$$

oxidation state of P = +4

The correct order of stability of given carbocations is :

(1) D > B > C > A

4.

- (2) C > A > D > B
- (3) D > B > A > C
- (4) A > C > B > D
- Ans. Official Answer NTA (4)

ČН,

- Sol. (i) is most stable due to resonance with benzene ring.
 - (ii) $CH_3 CH_2$ is second most stable due to hyper conjugation.
 - (iii) As the electronegativity of carbon increases, the stability of carbocation decreases.
 - SO $CH_2 = \overset{\oplus}{C}H$ is more stable than $CH = \overset{\oplus}{C}$
 - So, correct order of stability A > C > B > D.
- 5. For a reaction of order n, the unit of the rate constant is :
 - (1) mol¹⁻ⁿ $L^{2n}s^{-1}$
 - (2) mol¹⁻ⁿ $L^{n-1} s^{-1}$
 - (3) mol¹⁻ⁿ $L^{1-n} s^{-1}$
 - (4) $mol^{1-n} L^{n-1}s$

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

Page No. 3

Ans. Official Answer NTA (2)

Sol. Order of Reaction = n

$$\mathbf{R} = \mathbf{K} \; (\mathrm{Conc})^{\mathrm{n}}$$

$$K = \frac{\operatorname{conc} / \operatorname{sec}}{(\operatorname{conc})^n}$$

$$K = (Conc)^{1-n} s^{-1}$$

$$K = Mol^{1-n} L^{n-1}s^{-1}$$

6.

Consider the above reaction and identify the Product P :

Ans. Official Answer NTA (1)

- 7. Which one of the following statements is NOT correct ?
 - (1) Eutrophication leads to anaerobic conditions
 - (2) The dissolved oxygen concentration below 6 ppm inhibits fish growth
 - (3) Eutrophication indicates that water body is polluted
 - (4) Eutrophication leads to increase in the oxygen level in water
- Ans. Official Answer NTA (4)
- Sol. Eutrophication leads to decrease in the oxygen level in water and Rest Statements are true. So 4th statement is incorrect.
- 8. Given below are two statements :

Statement I : Aniline is less basic than acetamide.

Statement II : In aniline, the lone pair of electrons on nitrogen atom is delocalised over benzene ring

due to resonance and hence less available to a proton.

Choose the most appropriate option :

- (1) Statement I is true but statement II is false.
- (2) Both statement I and statement II are true.
- (3) Both statement I and statement II are false.
- (4) Statement I is false but statement II is true.
- Ans. Official Answer NTA (4)

Therefore, Aniline is more basic than acetamide.

9. Match List - I with List - II :

	List - I			List - II	
	(Drug)			(Class of Drug)	
	(a) Furacin			(i) Antibiotic	
	(b) Arsphenamine			(ii) Tranquilizers	
	(c) Dimetone			(iii) Antiseptic	
	(d) Valium			(iv) Synthetic antihistamines	
	Choose the most app	propriate match :			
	(1) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)				
	(2) (a)-(i), (b)-(iii), ((c)-(iv), (d)-(ii)			
	(3) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)			
	(4) (a)-(iii), (b)-(iv),	(c)-(ii), (d)-(i)			
Ans.	Official Answer NT.	A (3)			
Sol.	(a) furacin	-	(i) Antiseptic		
	(b) Arsphenamine	-	(ii) Anitbiotic		
	(c) Dimetone	-	(iii) Synthetic antihi	stamines	
	(d) Valium	-	(iv) Tranquilizers		
10.	The type of hybridisation and magnetic property of the complex $[MnCl_6]^{3-}$, respectively, are :				
	(1) sp^3d^2 and paramagnetic				
	(2) d^2sp^3 and diamagnetic				
	(3) sp ³ d ² and diamagnetic				

Official Answer NTA (1) Ans.

(4) d^2sp^3 and paramagnetic

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

12. Which one of the following compounds will give orange precipitate when treated with 2,4-dinitrophenyl hydrazine?

OH

Sol. Carbonyl compounds (aldehyde and ketone) give orange precipitate with 2, 4-dinitrophenyl hydrazine.

- 13. Which one among the following chemical tests is used to distinguish monosaccharide from disaccharide ?
 - (1) Tollen's test

MATRIX

- (2) Iodine test
- (3) Barfoed's test
- (4) Seliwanoff's test
- Ans. Official Answer NTA (3)
- Sol. Barfoed's test is used for distinguishing monosaccharides from reducing disaccharides. Monosaccharides usually react in about 1-2 minutes while the reducing disaccharides take much longer time between 7-12 minutes to react with the reagent.

Brick red color is obtained in this test which is due to formation of cuprous oxide.

Reaction involved :

 $R-CHO + 2Cu^{2+} + 2H_2O \rightarrow R-COOH + Cu_2O(\downarrow) + 4H^+$

14. Given below are two statements :

Statement I : Rutherford's gold foil experiment cannot explain the line spectrum of hydrogen atom.

Statement II : Bohr's model of hydrogen atom contradicts Heisenberg's uncertainty principle.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both statement I and statement II are true.
- (2) Statement I is true but statement II is false.
- (3) Both statement I and statement II are false.
- (4) Statement I is false but statement II is true.
- Ans. Official Answer NTA (1)
- Sol. <u>Statement-I</u> → Line Spectrum of Hydrogen is explained by Bohr's model
 <u>Statement-I</u> → Yes because in Bohr's model, position and velocity of electron can be calculated.
 So both are true

Question Paper With Text Solution (Chemistry)

JEE Main July 2021 | 27 July Shift-1

15. Given below are two statements : One is labelled as Assertion A and the other is labelled as Reason R.Assertion A : Lithium halides are some what covalent in nature.

Reason R : Lithium possess high polarisation capability.

In the light of the above statements, choose the most appropriate answer from the options given below:

(1) A is false but R is true.

MATRIX

- (2) Both A and R are true and R is the correct explanation of A.
- (3) Both A and R are true but R is NOT the correct explanation of A.
- (4) A is true but R is false.
- Ans. Official Answer NTA (2)
- Sol. Due to small size of Li, Li have high polarisation power So LiF will be covalent Compound

- (1) Adenine
- (2) Cytosine
- (3) Uracil
- (4) Guanine
- Ans. Official Answer NTA (1)
- Sol. The complementary base of thymine is Adenine.

MATRIX

Question Paper With Text Solution (Chemistry)

JEE Main July 2021 | 27 July Shift-1

- 17. The number of geometrical isomers found in the metal complexes $[PtCl_2(NH_3)_2]$, $[Ni(CO)_4]$, $[Ru(H_2O)_3Cl_3]$ and $[CoCl_2(NH_3)_4]^+$ respectively, are :
 - (1) 2, 0, 2, 2
 - (2) 2, 1, 2, 2
 - (3) 2, 1, 2, 1
 - (4) 1, 1, 1, 1
- Ans. Official Answer NTA (2)
- Ans. Answer by Matrix (1)
- Sol. Coordination compound G.I $[PtCl_2(NH_3)_2] \rightarrow [MA_2B_2] \qquad 2$ $[Ni(Co)_4] \rightarrow [MA_4] \qquad 0$ $[Ru(H_2O)_3Cl_3] \rightarrow [MA_3B_3] \qquad 2$ $[Co(Cl)_2(NH_3)_4]^+ \rightarrow [MA_2B_4] \qquad 2$
- 18. Staggered and eclipsed conformers of ethane are :
 - (1) Rotamers
 - (2) Mirror images
 - (3) Enantiomers
 - (4) Polymers
- Ans. Official Answer NTA (1)
- Sol. The conformational Isomerism arises due to the rotation about the single bond.

Therefore, staggered and eclipsed conformers are rotamers.

- 19. The parameters of the unit cell of a substance are a = 2.5, b = 3.0, c = 4.0, $\alpha = 90^{\circ}$, $\beta = 120^{\circ}$, $\gamma = 90^{\circ}$. The crystal system of the substance is :
 - (1) Monoclinic
 - (2) Orthorhombic
 - (3) Triclinic
 - (4) Hexagonal
- Ans. Official Answer NTA (1)

Sol. $a \neq b \neq c$ $\alpha = 90$

a = 2.5 b = 3 c = 4 $b = 120 \neq 90$ $\gamma = 90^{\circ}$

So crystal system is monoclimic.

20. Presence of which reagent will affect the reversibility of the following reaction, and change it to a irreversible reaction :

$$CH_{4}+I_{2} \xrightarrow{hv} CH_{3}-I + HI$$
(1) Liquid NH₃
(2) dilute HNO₂
(3) Concentrated HIO₃

(4) HOC1

- Ans. Official Answer NTA (3)
- Sol. The photoiodination is very slow and a reversible reaction. It is carried out in the presence of oxidizing agents like concentrated HIO₃ or concentrated HNO₃.

 $CH_4 + I_2 \iff CH_3I + HI$

 $HIO_3 + 5HI \rightarrow 3I_2 + 3H_2O$

SECTION - B

- 1. The number of geometrical isomers possible in triamminetrinitrocobalt (III) is X and in trioxalatochromate (III) is Y. Then the value of X + Y is _____.
- Ans. Official Answer NTA (2)

Sol.	(Coordination compound)	No. of G.I
	$[\text{Co}(\text{NH}_3)_3(\text{NO}_2)_3] \rightarrow [\text{MA}_3\text{B}_3]$	2 = X
	$[Cr(Ox)_3] \rightarrow [M(AA)_3 O = Y$	0 = Y
	Value of $X + Y = 2$	

Question Paper With Text Solution (Chemistry) JEE Main July 2021 | 27 July Shift-1

- 2. In gaseous triethyl amine the "-C N-C-" bond angle is_degree.
- Ans. Official Answer NTA (108)

MATRIX

- Sol. In gaseous triethyl amine angle is 108.
- 3. The conductivity of a weak acid HA of concentration 0,001 mol L⁻¹ is 2.0×10^{-5} S cm⁻¹. If Λ_{m}° (HA) = 190 S cm² mol⁻¹, the ionization constant (K_a) of HA is equal to _____ × 10⁻⁶. (Round off to the Nearest Integer)
- Ans. Official Answer NTA (12)

Sol.
$$\lambda_{\rm m} = \frac{k \times 1000}{M} = \frac{2 \times 10^{-5} \times 10^3}{10^{-3}} = 20$$

degree of dissociation of weak acid

$$\alpha = \frac{\lambda_{\rm m}}{\lambda_{\rm m}^{\rm o}} = \frac{20}{190} = \frac{2}{19}$$

ionisation constant
$$(k_a) = \frac{C\alpha^2}{1-\alpha} = \frac{10^{-3} \times \left(\frac{2}{10}\right)}{\frac{17}{19}}$$

 $K_a = 12.38 \times 10^{-6}$

So answer is 12.

4. The density of NaOH solution is 1.2 g cm⁻³. The molality of this solution is _____m. (Round off to the Nearest Integer)

[Use : Atomic masses : Na : 23.0 u O : 16.0 u H : 1.0 u Density of H_2O : 1.0 g cm⁻³]

- Ans. Official Answer NTA (5)
- Sol. $d_{NaOH} = 1.2 \text{gm/m}l$

assume 1 litre Solution

 $V_{sol} = 1000 \text{ ml}$ $M_{sol} = 1200 \text{ gm}$

 $V_{water} = 1000 \text{ ml}, M_{water} = 1000 \text{ gm}$

 $M_{NaOH} = M_{Sol} - M_{water} = 200 \text{ gm}$

Moles of NaOH = 5

$$Molality = \frac{5 \times 1000}{1000} = 5$$

5. For water at 100°C and 1 bar,

 Δ_{vap} H – Δ_{vap} U = _____ × 10² J mol⁻¹. (Round off to the Nearest Integer)

 $[Use : R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}]$

[Assume volume of $H_2O(u)$ is much smaller than volume of $H_2O(g)$. Assume $H_2O(g)$ can be treated as an ideal gas]

- Ans. Official Answer NTA (31)
- Sol. $\Delta H = \Delta u + \Delta n_{o}RT$

 $\Delta H - \Delta u = \Delta n_{g} RT$

For permole

 $\Delta n_g = 1$

 $H_2O(1) \rightleftharpoons H_2O(g)$

 $= 1 \times 8.314 \times 373$

= 3101.22J

 $= 31.01 \times 10^{2} \text{J}$

So ans is 31

6. An organic compound is subjected to chlorination to get compound A using 5.0 g of chlorine. When 0.5 g of compound A is reacted with AgNO₃ [Carius Method], the percentage of chlorine in compound A is ______ when it forms 0.3849 g of AgCl. (Round off to the Nearest Integer)

(Atomic masses of Ag and CI are 107.87 and 35.5 respectively)

- Ans. Official Answer NTA (19)
- Sol. Percentage of chlorine (% Cl) = $\frac{\text{Atomic mass of chlorine} \times m_1 \times 100}{\text{molar mass of AgCl} \times m}$

Given, mass of AgCl formed $(m_1) = 0.3849g$ mass of orgaine compound (m) taken = 0.5 g

% Cl =
$$\frac{35.5 \times 0.3849}{143.37 \times 0.5} \times 100$$

% Cl = 19.06

1.46 g of a biopolymer dissolved in a 100 mL water at 300 K exerted an osmotic pressure of 2.42×10⁻³ bar. The molar mass of the biopolymer is _____ × 10⁴ g mol⁻¹. (Round off to the Nearest Integer)

 $[\text{Use} : \text{R} = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}]$

Ans. Official Answer NTA (15)

MATRIX

Sol. $\pi = CRT$

$$2.42 \times 10^{-3} = \frac{1.46}{\frac{M_{w}}{100}} \times 1000 \times .83 \times 300$$
$$2.42 \times 10^{-3} = \frac{1.46}{M_{w}} \times 83 \times 3$$

$$M_{w} = \frac{1.46 \times 83 \times 3}{2.42} \times 10^{3}$$

=150.22×10³
$$M_{w} = 15.022 \times 10^{4}$$

8. The difference between bond orders of CO and NO⁺ is $\frac{x}{2}$ where x = _____. (Round off to the

Nearest Integer)

- Ans. Official Answer NTA (0)
- Sol. According to M.O.T

B.O of CO = 3

B.O of $NO^{+} = 3$

difference between B.O = 0

So value of $\frac{x}{2} = 0$

- 9. CO_2 gas adsorbs charcoal following Froundlich adsorption isotherm. For a given amount of charcoal, the mass of CO_2 , adsorbed becomes 64 times when the pressure of CO_2 is doubled. The value of n in the Freundlich isotherm equation is _____ × 10⁻². (Round off to the Nearest Integer)
- Ans. Official Answer NTA (17)

 $\frac{X}{M} = K(P)^{\frac{1}{n}}$ Sol.(i) $x \frac{64}{M} = K(2P)^{\frac{1}{n}}$ (ii) divide equ. (i) and equ. (ii) $\frac{1}{64} = \frac{1}{(2)^{\frac{1}{n}}}$ $\frac{1}{2^6} = \frac{1}{(2)^{\frac{1}{n}}}$ \Rightarrow n = $\frac{1}{6}$ \Rightarrow n = 0.167 = 16.7 \times 10^{-2} So answer is 17 $PC1_5 \longrightarrow PCl_3 + Cl_2$ $K_c = 1.844$ 10. 3.0 moles of PCl_5 is introduced in a 1 L closed reaction vessel at 380 The Hie number of moles of PCl_5 at equilibrium is _____ $\times 10^{-3}$. (Round off to the Nearest Integer) Official Answer NTA (1400) Ans. Ans. Answer by Matrix (1396) $PC1_{5} \longrightarrow PCl_{3} + Cl_{2}$ $K_{c} = 1.844, V = 1L$ t = 0 3 Sol. ↓-x 3–x Х Х ХХ $k_{c} = \frac{1}{3-X} = 1.844$ $x^2 = 1.844(3-x)$ $x^{2} + x 1.844^{-3} \times 1.844 = 0$ x = 1.604Left moles of $PCl_5 = 3-1.6$ =1.396 =1396×10⁻³