JEE Main June 2022 Question Paper With Text Solution 26 June | Shift-1

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

1. A commercially sold conc. HCl is 35% HCl by mass. If the density of this commercial acid is 1.46 g/mL, the molarity of this solution is : (Atomic mass : Cl = 35.5 amu, H = 1 amu)

व्यावसायिक रूप में बिकने वाला सान्द्र HCl द्रव्यमान से 35% HCl होता है। यदि इस व्यापारिक अम्ल का घनत्व 1.46~g/mL है, तो इस विलयन की मोलरता है : (परमाणु द्रव्यमान : Cl = 35.5~amu, H = 1~amu)

(1) 10.2 M

(2) 12.5 M

(3) 14.0 M

(4) 18.2 M

Ans. Official Answer NTA (3)

Question ID:101031

Sol. Molarity =
$$\frac{35}{(36.5) \times \frac{100}{146}} \times 1000 = 14.0 \text{ M}$$

2. An evacuated glass vessel weighs 40.0 g when empty, 135.0 g when filled with a liquid of density 0.95 g mL⁻¹ and 40.5 g when filled with an ideal gas at 0.82 atm at 250 K. The molar mass of the gas in g mol⁻¹ is : (Given : R = 0.082 L atm K^{-1} mol⁻¹)

एक निर्वातित शीशे के पात्र का भार 40.0~g है जब वह खाली है, 135.0~g है जब वह $0.95~g~mL^{-1}$ घनत्व वाले द्रव से भरा है तथा 40.5~g है जब वह 0.82~atm दाब एवं 250~K पर एक आदर्श गैस से भरा है। गैस का आण्विक द्रव्यमान $(g~mol^{-1}$ में) है: (दिया गया है : $R = 0.082~L~atm~K^{-1}~mol^{-1})$

(1) 35

(2)50

(3)75

(4) 125

Ans. Official Answer NTA (4)

Question ID:101032

Sol. Weight of liquid =
$$135.0 - 40.0 = 95.0 \text{ g}$$

Volume of liquid =
$$\frac{95}{0.95}$$
 = 100 ml = 0.1 L

Weight of gas =
$$0.5 g$$

Moles of gas =
$$\frac{0.5}{M}$$

$$PV = nRT$$

$$0.82 \times 0.1 = \frac{0.5}{M} \times 0.082 \times 250$$

$$M = 0.5 \times 250 = 125 \text{ g mol}^{-1}$$

If the radius of the 3^{rd} Bohr's orbit of hydrogen atom is r_3 and the radius of 4^{th} Bohr's orbit is r_4 . Then: 3.

यदि हाइड्रोजन परमाणु के $3^{\rm rd}$ बोर कक्षा की त्रिज्या $r_{_3}$ है तथा $4^{\rm th}$ बोर कक्षा की त्रिज्या $r_{_4}$ है तो :

(1)
$$r_4 = \frac{9}{16}r_3$$

(2)
$$r_4 = \frac{16}{9}r_3$$
 (3) $r_4 = \frac{3}{4}r_3$ (4) $r_4 = \frac{4}{3}r_3$

(3)
$$r_4 = \frac{3}{4}r_3$$

(4)
$$r_4 = \frac{4}{3}r_3$$

Official Answer NTA (2) Ans.

Question ID:101033

Sol.
$$r = 0.529 \times \frac{n^2}{z} \text{Å}$$

$$r_3 = 0.529 \times \frac{3^2}{1}$$

$$r_4 = 0.529 \times \frac{4^2}{1}$$

$$\frac{r_4}{r_3} = \frac{4^2}{3^2} = \frac{16}{9}$$

$$r_4 = \frac{16r_3}{9}$$

4. Consider the ions/molecule

$$O_2^+, O_2^-, O_2^-, O_2^{2-}$$

For increasing bond order the correct option is:

निम्न आयनों / अणु पर विचार करें :

$$O_2^+, O_2, O_2^-, O_2^{2-}$$

बढ़ते हुए आबन्ध कोटि हेतु सही विकल्प है।

(1)
$$O_2^{2-} < O_2^- < O_2^+ < O_2^+$$

(2)
$$O_2^- < O_2^{2-} < O_2 < O_2^+$$

(3)
$$O_2^- < O_2^{2-} < O_2^+ < O_2$$

(4)
$$O_2^- < O_2^+ < O_2^{2-} < O_2$$

Official Answer NTA (1) Ans.

Question ID:101034

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

Sol.

ion/molecule	Number of e in BMO	Number of e in ABMO	Bond order
$O_2^{^+}$	10	5	2.5
O_2	10	6	2
O_2^-	10	7	1.5
O_2^{2-}	10	8	1

Bond roder $O_2^{2-} < O_2^{-} < O_2^{+}$

The $\left(\frac{\partial E}{\partial T}\right)_{R}$ of different types of half cells are as follows: 5.

A

D

 1×10^{-4}

 2×10^{-4}

 0.1×10^{-4}

 0.2×10^{-4}

(Where E is the electromotive force)

Which of the above half cells would be preferred to be used as reference electrode?

विभिन्न प्रकार के अर्ध सेलों के लिए $\left(\frac{\partial E}{\partial T}\right)_{\!P}$ निम्न हैं :

D

A B 1×10^{-4} 2×10^{-4}

C 0.1×10^{-4}

 0.2×10^{-4}

(जहाँ E =वैद्युत वाहक बल है)

उपर्युक्त अर्ध सेलों में से किस संदर्भ इलेक्ट्रोड के उपयोग में वरीयता दी जाएगी ?

(1)A

(2) B

(3) C

(4) D

Official Answer NTA (3) Ans.

Question ID:101035

preferred.

A cell with less variation in EMF with temperature is preferred as reference electrode because it can be used Sol. for wider range of temperature without much deviation from standard value so a cell with less $\left(\frac{\partial E}{\partial T}\right)_{n}$ is

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

6. Choose the correct stability order of group 13 elements in their +1 oxidation state.

+1 ऑक्सीकरण अवस्था में समूह 13 के तत्वों के स्थायित्व के सही क्रम को चुनें :

(1) Al < Ga < In < Tl (2) Tl < In < Ga < Al (3) Al < Ga < Tl < In <math>(4) Al < Tl < Ga < In

Ans. Official Answer NTA(1)

Question ID:101036

Sol. In boron family as we move down the group, stability of +1 state increases due to inert pair effect

7. Given below are two statements:

Statement I : According to the Ellingham diagram, any metal oxide with higher ΔG° is more stable than the one with lower ΔG° .

Statement II: The metal involved in the formation of oxide placed lower in the Ellingham diagram can reduce the oxide of a metal placed higher in the diagram. In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

नीचे दो कथन दिए गए हैं:

कथन I: एलिंघम आरेख के अनुसार, अधिक ΔG° वाला कोई धातु ऑक्साइड कम ΔG° वाले धातु ऑक्साइड

से अधिक स्थायी होता है।

कथन II: वह धातु जो ऑक्साइड निर्माण में हिस्सा लेती है तथा एलिघंम आरेख में नीचे स्थित है, वह आरेख

में ऊपर स्थित धातू के ऑक्साइड को अपचयित कर सकता है।

उपर्युक्त कथनों के प्रकाश में नीचे दिए गए विकल्पों में से सर्वाधिक उपयुक्त उत्तर को चूनें :

- (1) **कथन I** एवं **कथन II** दोनों सही हैं।
- (2) कथन I एवं कथन II दोनों गलत हैं।
- (3) कथन I सही है परन्त् कथन II गलत है।
- (4) **कथन I** गलत है परन्तु **कथन II** सही है।

Ans. Official Answer NTA (4)

Question ID:101037

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

Sol. Ellingham diagram is plot of ΔG vs T. The criterion for the feasibility of a thermal reduction is that at a given temperature Gibbs energy change of a reaction must be negative. The change in Gibbs energy, ΔG for any process at any specified temperature, is given by the equation

$$\Delta G = \Delta H - T\Delta S$$

where ΔH = enthalpy change and

 $\Delta S = \text{entropy change}$

According to the ellingham diagram, any metal oxide with higher ΔG° has a tendency of getting reduced by the metal whose metal oxide has lower value of ΔG° .

Therefore, Statement I is incorrect but Statement II is correct.

8. Consider the following reaction:

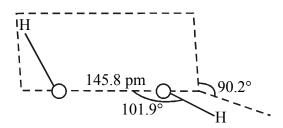
$$2HSO_4^-(aq) \xrightarrow{(1) \text{ Electrolysis}} 2HSO_4^- + 2H^+ + A$$

The dihedral angle in product A in its solid phase at 110 K is:

निम्न अभिक्रिया पर विचार करें :

110 K पर ठोस प्रावस्था में उत्पाद A का द्वितल कोण है :

$$(1)\,104^{\circ}$$


$$(3)90.2^{\circ}$$

Ans. Official Answer NTA(3)

Question ID:101038

Sol. A should be H₂O₂

Structure of H₂O₂ in solid phase

Dihedral angle = 90.2°

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

9. The correct order of melting point is:

गलनांक का सही क्रम है:

(1) Be > Mg > Ca > Sr

(2) Sr > Ca > Mg > Be

(3) Be > Ca > Mg > Sr

(4) Be > Ca > Sr > Mg

Ans. Official Answer NTA (4)

Question ID:101039

Sol. M.P

Be 1560 K

Mg 924 K

Ca 1124 K

Sr 1062 K

10. The correct order of melting points of hydrides of group 16 elements is:

समूह 16 तत्वों के हाइड्राइडों के गलनांक का सही क्रम है:

- $(1) H_2S < H_2Se < H_2Te < H_2O$
- (2) $H_2O < H_2S < H_2Se < H_2Te$
- $(3) H_2S < H_2Te < H_2Se < H_2O$
- $(4) H_2Se < H_2S < H_2Te < H_2O$

Question ID:101040

Ans. Official Answer NTA(1)

Sol. M.P

H₂O 273 K

H₂S 188 K

H₂Se 208 K

H,Te 222 K

11. Consider the following reaction:

 $A + alkali \rightarrow B$ (Major Product)

If B is an oxoacid of phosphorus with no P-H bond, then A is:

- (1) White P_{4}
- (2) Red P_{A}
- $(3) P_2O_3$
- (4) H₃PO₃

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

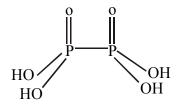
Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

निम्न अभिक्रिया पर विचार करें:

A +धार $\rightarrow B (मुख्य उत्पाद)$


यदि B फास्फोरस का एक ऑक्सो अम्ल है जिसमें कोई भी P-H आबन्ध नहीं है, तो A है :

- (1) श्वेत P,
- (2) লাল P₄
- $(3) P_2 O_3$
- $(4) H_3PO_3$

Ans. Official Answer NTA(2)

Question ID:101041

Sol. Red P on reaction with alkali gives hypophosphoric acid (H₄P₂O₆)

12. Polar stratospheric clouds facilitate the formation of:

धुवीय समतापमंडलीय बादल निम्न के निर्माण को सुगम करते हैं:

- (1) ClONO,
- (2) HOCl
- (3) ClO
- $(4) CH_4$

Ans. Official Answer NTA(2)

Question ID:101042

Sol. In summer season nitrogen dioxide and methane react with chlorine monoxide and chlorine atoms forming, Chlorine sinks, preventing much ozone depletion, whereas in winter, special types of clouds called polar stratospheric clouds are formed over Antarctica. These polar stratospheric clouds provide surface on which chlorine nitrate formed gets hydrolysed to form hypochlorous acid.

$$ClO(g) + NO_2(g) \rightarrow ClONO_2(g)$$

$$CIONO_2(g) + H_2O(g) \rightarrow HOCl(g) + HNO_3(g)$$

13. Given below are two statements:

Statement I: In 'Lassaigne's Test', when both nitrogen and sulphur are present in an organic compound, sodium thiocyanate is formed.

Statement II: If both nitrogen and sulphur are present in an organic compound, then the excess of sodium used in sodium fusion will decompose the sodium thiocyanate formed to give NaCN and Na₂S. In the light of the above statements, choose the most appropriate answer from the options given below:

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

(1) Both Statement I and Statement II are correct.

- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct.

नीचे दो कथन दिए गए हैं:

कथन I: लैसानें परीक्षण में जब किसी कार्बनिक यौगिक में नाइट्रोजन एवं सल्फर दोनों उपस्थित होते हैं तो

सोडियम थायोसायनेट का निर्माण होता है।

कथन II: जब किसी कार्बनिक पदार्थ में नाइट्रोजन एवं सल्फर दोनों उपस्थित रहते हैं तो सोडियम संगलन

में उपयोग की गई सोडियम की अधिक मात्रा, उत्पन्न सोडियम थायोसायनेट को अपघटित कर

NaCN एवं Na₂S बना देता है।

उपर्युक्त कथनों के प्रकाश में नीचे दिए गए विकल्पों में से सर्वाधिक उपयुक्त उत्तर को चुनें

(1) कथन I एवं कथन II दोनों सही हैं।

- (2) कथन I एवं कथन II दोनों गलत हैं।
- (3) कथन I सही है परन्तु कथन II गलत है।
- (4) कथन I गलत है परन्तु कथन II सही है।

Ans. Official Answer NTA(1)

Ouestion ID:101043

Sol. Both statement-I & II are correct.

(In case, nitrogen and sulphur both are present in an organic compound, then sodium thiocyanate (Blood red colour) is formed with neutral FeCl₃.

 $Na + C + N + S \rightarrow NaSCN$

Neutral FeCl₃ + NaSCN \rightarrow Fe(SCN)₃)

Blood red

If Na is taken in excess, it destroy SCN- and form Na₂S and NaCN.

MATRIX JEE ACADEMY

JEE Main June 2022 | 26 June Shift-1

 $(C_7H_5-O_2)_2 \xrightarrow{hv} [X] \rightarrow 2\dot{C}_6H_5 + 2CO_2$ 14.

Consider the above reaction and identify the intermidiate 'X'.

$$(C_7H_5-O_2)_2 \xrightarrow{hv} [X] \rightarrow 2\dot{C}_6H_5 + 2CO_2$$

उपर्युक्त अभिक्रिया पर विचार करें एवं मध्यवर्ती 'X' को पहचाने :

$$(1) C_6H_5 - \overset{\mathbf{O}}{C} \oplus$$

(2)
$$C_6H_5 - C - O^{\odot}$$

(3)
$$C_6H_5 - C - O$$

(2)
$$C_6H_5 - \overset{O}{C} - O^{\ominus}$$
 (3) $C_6H_5 - \overset{O}{C} - \overset{O}{O}$ (4) $C_6H_5 - \overset{O}{C} - \overset{O}{O}$

Official Answer NTA (4) Ans.

Question ID:101044

15.
$$\begin{array}{c} MgBr \\ + CH_3 - C - CH_2 - C - CH_3 \\ \hline MgBr \end{array}$$
 'A' $\begin{array}{c} H_2O \\ \hline Major \ Product \\ \end{array}$

Consider the above reaction sequence and identify the product **B**.

उपर्युक्त अभिक्रिया के क्रम पर विचार करें एवं उत्पाद B को पहचानें।

OH
$$CH_3$$
 CH_3 CH_3 CH_3

MATRIX JEE ACADEMY

JEE Main June 2022 | 26 June Shift-1

$$(3) \begin{array}{c} OH \\ H_3C \\ OH \end{array}$$

Ans. Official Answer NTA(1)

Question ID:101045

Sol. Although Acetyl Acetone predominantly gives Acid base reaction with G.R due to Active methylene group but according to given option are should be based on nucleophilic addition reaction (NAR).

 H_3C

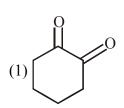
MgBr
$$\theta$$
 O=C CH₃ CH₂ CH₂ CH₂

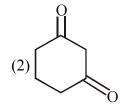
$$\theta$$
MgBr θ O=C CH CH₂

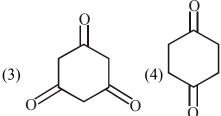
$$\theta$$

$$\theta$$
O=C CH CH₂

$$\theta$$
OmgBr O


MATRIX JEE ACADEMY

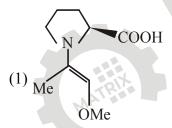

Question Paper With Text Solution (Chemistry)

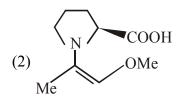

JEE Main June 2022 | 26 June Shift-1

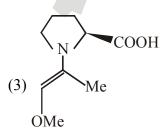
16. Which will have the highest enol content?

निम्न में से किसमें 'ईनाल' (enol) की मात्रा सर्वाधिक है ?

Ans. Official Answer NTA (3)


Question ID:101046


Sol.


17. Among the following structures, which will show the most stable enamine formation?

(Where Me is -CH₃)

निम्न संरचनाओं में से कौन सी सर्वाधिक स्थायी 'ईनऐमीन' (enamine) निर्माण प्रदर्शित करेगी ? (जहाँ Me – CH, है)

Ans. Official Answer NTA(3)

Question ID:101047

Sol.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

Which of the following sets are correct regarding polymer? 18.

(A) Copolymer: Buna-S

(B) Condensation polymer: Nylon-6,6

(C) Fibres: Nylon-6,6

(D) Thermosetting polymer: Terylene

(E) Homopolymer: Buna-N

Choose the correct answer from given options below:

(1) (A), (B) and (C) are correct

(2) (B), (C) and (D) are correct

(3)(A),(C) and (E) are correct

(4) (A), (B) and (D) are correct

निम्न में से बहुलकों के संदर्भ में कौन से सेट सही हैं ?

(A) सह बहुलक : ब्यूना-S

(B) संघनन बहुलक : नाइलन-6, 6

(C) रेशे : नाइलॉन-6, 6

(D) तापदृढ़ बहुलक : टेरीलीन

(E) समबहुलक : ब्यूना–N

नीचे दिए गए विकल्पों में से सर्वाधिक उचित उत्तर चुनें :

(1) (A), (B) एवं (C) (2) (B), (C) एवं (D)

(3) (A), (C) एवं (E)

(4) (A), (B) एवं (D)

Official Answer NTA (1) Ans.

Question ID:101048

Sol. (A) Buna-S – Copolymer

(B) Nylon-6,6 – Condensation polymer

(C) Nylon-6,6 – Fibre

(D) Terylene – Thermoplastic

(E) Buna-N – Copolymer

(A) A, B and C are correct.

A chemical which stimulates the secretion of pepsin is: 19.

(1) Anti histamine

(2) Cimetidine

(3) Histamine

(4) Zantac

रसायन जो पेप्सिन के स्रवण को प्रोत्साहित करता है, वह है :

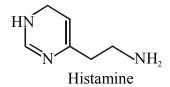
MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

(1) प्रतिहिस्टैमिन

(2) सिमेटिडीन


(3) हिस्टैमिन

(4) जैनटेक

Ans. Official Answer NTA (3)

Question ID:101049

Sol. Histamine stimulates the secretion of pepsin and hydrochloric acid in the stomach.

- 20. Which statement is not true with respect to nitrate ion test?
 - (1) A dark brown ring is formed at the junction of two solutions.
 - (2) Ring is formed due to nitroferrous sulphate complex.
 - (3) The brown complex is $[Fe(H_2O)_5(NO)]SO_4$.
 - (4) Heating the nitrate salt with conc. H_2SO_4 , light brown fumes are evolved. नाइट्रेट आयन के गुणात्मक परीक्षण के संदर्भ में कौन सा कथन **सही नहीं** है ?
 - (1) दो विलयन के अंतरापृष्ठ (जंक्शन) पर एक गाढ़ा-भूरा वलय बनता है।
 - (2) नाइट्रोफेरस सल्फेट संकुल के निर्माण के कारण वलय निर्मित होता है।
 - (3) भूरा संकुल है : [Fe(H₂O)₅ (NO)]SO₄
 - (4) लवण को सान्द्र H_2SO_4 के साथ गर्म करने पर हल्की-भूरी गैस निकलती है।

Ans. Official Answer NTA (2)

Question ID:101050

Sol. Brown ring test

$$NO_3^- + 3Fe^{+2} + 4H^+ \rightarrow NO + 3Fe^{+3} + 2H_2O$$

$$[\mathrm{Fe}(\mathrm{H_2O})_6]^{2^+}\,\mathrm{NO} \rightarrow [\mathrm{Fe}(\mathrm{H_2O})_5\mathrm{NO}]^{2^+}\,\mathrm{H_2O}$$

Brown ring

21. For complete combustion of methanol

$$CH_3OH(l) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

the amount of heat produced as measured by bomb calorimeter is 726 kJ mol $^{-1}$ at 27°C. The enthalpy of combustion for the reaction is -x kJ mol $^{-1}$, where x is _____. (Nearest integer)

(Given: $R = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}$)

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

मेथेनॉल के पूर्ण दहन के लिए

$$CH_3OH(l) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$

बम केलोरीमीटर द्वारा मापी गई उत्पन्न ऊष्मा की मात्रा 27° C पर $726~kJ~mol^{-1}$ है। दहन अभिक्रिया की एन्थेल्पी है $-x~kJ~mol^{-1}$, जहाँ x~है _____। (निकटतम पूर्णांक)

(दिया गया है : $R = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}$)

Ans. Official Answer NTA (727)

Question ID:101051

Sol. $\Delta U = -726 \text{ KJ/mol}$

$$\Delta n_{g} = 1 - 3/2 = \frac{-1}{2}$$

$$\Delta H = \Delta U + \Delta n_{g} RT$$

$$=-726-\frac{1}{2}\times\frac{8.3\times300}{1000}$$

$$=-727.245$$

22. A 0.5 percent solution of potassium, chloride was found to freeze at -0.24 °C. The percentage dissociation of

potassium chloride is _____. (Nearest integer)

(Molal depression constant for water is 1.80 K kg mol⁻¹ and molar mass of KCl is 74.6 g mol⁻¹)

पोटैशियम क्लोराइड का 0.5 प्रतिशत विलयन – $0.24^{\circ}\mathrm{C}$ पर जम जाता है। पोटैशियम क्लोराइड का वियोजन प्रतिशत है। (निकटतम पूर्णांक)

(जल के लिए मोलल अवनमन स्थिरांक है : $1.80~{\rm K~kg~mol^{-1}}$ एवं ${\rm KCl}$ का मोलर द्रव्यमान है : $74.6~{\rm g~mol^{-1}}$)

Ans. Official Answer NTA (98)

Question ID:101052

Sol. 100 gm of solution contains 0.5 gm KCl then mass of $H_2O = 100 - 0.5 = 99.5$ gm

$$m = \frac{0.5}{74.5} \times \frac{1}{.0995}$$

$$i = \frac{0.24 \times 74.6 \times .0995}{.5 \times 1.80}$$

$$= 1.979$$

$$1.979 = 1 + \alpha (n-1)$$

$$1.979 = 1 + \alpha$$

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1 $\alpha = .979$ $\% \alpha = 97.9\%$ Ans 98% 23. 50 mL of 0.1 M CH₂COOH is being titrated against 0.1 M NaOH. When 25 mL of NaOH has been added, the pH of the solution will be $___ \times 10^{-2}$. (Nearest integer) (Given: pK_a (CH₃COOH) = 4.76) 0.1 M CH_COOH के 50mL का 0.1 M NaOH के साथ अनुमापन किया गया। जब NaOH के 25 mL मिलाये गए तो विलयन का pH हो गया $\times 10^{-2}$ । (निकटतम पूर्णांक) (दिया गया है : pK₃ (CH₃COOH) = 4.76) log 2 = 0.30log 3 = 0.48log 5 = 0.69log 7 = 0.84log 11 = 1.04Official Answer NTA (476) Ans. Question ID:101053 Sol. $CH_3COOH (aq) + NaOH (aq.) \rightarrow CH_3COONa (aq) + H_2O (\ell)$ milli moles 2.5 After reaction milli moles 2.5 2.5 Resultat solution is acidic buffer solution with same concentration of acid and salts. So, pH of solution $pH = pKa = 4.76 = 476 \times 10^{-2}$. 24. A flask is filled with equal moles of A and B. The half lives of A and B are 100 s and 50 s respectively and are independent of the initial concentration. The time required for the concentration of A to be four times that of B is s. (Given: $\ln 2 = 0.693$) एक फ्लास्क में A एवं B के समान मोलों को भरा गया है। A एवं B की अर्द्ध आयु हैं क्रमशः $100\,\mathrm{s}$ एवं $50\,\mathrm{s}$ जो उनकी प्रारम्भिक

MATRIX JEE ACADEMY

सान्द्रता से स्वतंत्र हैं। समय जिसमें A की सान्द्रता B की सान्द्रता की चार गुना हो जाएगी, वह है s.

JEE Main June 2022 | 26 June Shift-1

(दिया गया है : $\ln 2 = 0.693$)

Ans. Official Answer NTA (200)

Question ID:101054

Sol. For first order reaction

$$k = \frac{0.693}{t_{1/2}}$$

$$[A] = 4[B]$$

$$[A]_0 e^{-k_A t} = 4[B]_0 e^{-k_B t}$$

:
$$as[A]_0 = [B]_0; e^{-k_A t} = 4e^{-k_B t}$$

$$-k_{\Delta}t = In4 - k_{R}t$$

$$\therefore t(k_B - k_A) = 2\ell n2$$

$$t = \frac{2 \times 0.693}{\left(\frac{0.693}{50} - \frac{0.693}{100}\right)} = \frac{2 \times 100}{2 - 1} = 200 \text{ sec.}$$

25. $2.0 \,\mathrm{g}$ of $\mathrm{H_2}$ gas is adsorbed on 2.5 g of platinum powder at 300 K and 1 bar pressure. The volume of the gas adsorbed per gram of the adsorbent is _____ mL.

(Given: $R = 0.083 L bar K^{-1} mol^{-1}$)

 $300~{\rm K}$ एवं $1~{\rm bar}$ दाब पर $2.0~{\rm g}~{\rm H_2}$ गैस को $2.5~{\rm g}$ प्लैटिनम चूर्ण पर अधिशोषित किया गया है । अधिशोषक की प्रति ग्राम मात्रा पर अधिशोषित हुयी गैस का आयतन है _____ ${\rm mL}$.

(दिया गया है : $R = 0.083 \text{ L bar } K^{-1} \text{ mol}^{-1}$)

Ans. Official Answer NTA (9960)

Question ID:101055

Sol.
$$PV = nRT$$

$$V = \frac{2 \times 0.083 \times 300}{2 \times 1} = 24.9$$
 Litre

 \therefore Volume of the gas adsorbed per gram of the adsorbent = $\frac{24.9}{2.5}$ = 9.96L

 $= 9960 \, \text{ml}$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 26 June Shift-1

26.	The spin-only magnetic moment value of the most basic oxide of vanadium among V_2O_3 , V_2O_4 and V_2O_5 is
	B.M. (Nearest integer)
	V_2O_3,V_2O_4 एवं V_2O_5 में से वैनेडियम के सर्वाधिक क्षारीय ऑक्साइड के 'केवल स्पिन' चुम्बकीय आधूर्ण का मान है
	B.M. (निकटतम पूर्णांक)
Ans.	Official Answer NTA (3)
Quest	ion ID:101056
Sol.	The most basic oxide among V_2O_3 , V_2O_4 and V_2O_5 is V_2O_3
	Magnetic moment = $\sqrt{2(2+2)} = \sqrt{8}$
	= 2.83≈3
27.	The spin-only magnetic moment value of an octahedral complex among CoCl ₃ .4NH ₃ , NiCl ₂ .6H ₂ O and
	PtCl ₄ .2HCl, which upon reaction with excess of AgNO ₃ gives 2 moles of AgCl is B.M.
	(Nearest Integer)
	$CoCl_3 \cdot 4NH_3$, $NiCl_2 \cdot 6H_2O$ एवं $PtCl_4 \cdot 2HCl$ संकुलों में से एक $AgNO_3$ के आधिक्य में से अभिक्रिया कर $AgCl$ के 2
	मोलों का निर्माण करता है। उस संकुल के 'केवल स्पिन' चुम्बकीय आघूर्ण का मान है B.M.
	(निकटतम पूर्णांक)
Ans.	Official Answer NTA (3)
Quest	ion ID:101057
Sol.	$CoCl_3$. $4NH_3 \rightarrow [Co(NH_3)_4Cl_2]Cl$
	$NiCl_2.6H_2O \rightarrow [Ni(H_2O)_6]Cl_2$
	$PtCl_4.2HCl \rightarrow H_2[PtCl_6]$
	$[Ni(H2O)6]Cl2 \xrightarrow{2AgNO3} 2AgCl \downarrow + [Ni(H2O)6](NO3)2$
	111 e _g
	$\mu = \sqrt{1(2+2)}B.M = 2.84BM \approx 3$
28.	On complete combustion 0.30 g of an organic compound gave 0.20 g of carbon dioxide and 0.10 g of
	water. The percentage of carbon in the given organic compound is (Nearest Integer)
	$0.30~\mathrm{g}$ कार्बनिक यौगिक का पूर्ण दहन पर $0.20~\mathrm{g}$ कार्बन डाइऑक्साइड के एवं $0.10~\mathrm{g}$ जल देता है। कार्बनिक यौगिक में
	कार्बन का प्रतिशत है (निकटतम पूर्णांक)
Ans.	Official Answer NTA (18)
	MATRIX JEE ACADEMY

JEE Main June 2022 | 26 June Shift-1

Question ID:101058

Sol. Moles of
$$CO_2 = \frac{0.2}{44}$$

$$Moles of carbon = \frac{0.2}{44}$$

Weight of carbon =
$$\frac{0.2}{44} \times 12 \text{ g}$$

% of carbon =
$$\frac{0.2}{44} \times 12 \times \frac{100}{0.3} = 18.11$$

29. Compound 'P' on nitration with dil. HNO₃ yields two isomers (A) and (B). These isomers can be separated by steam distillation. Isomers (A) and (B) show the intramolecular and intermolecular hydrogen bonding respectively. Compound (P) on reaction with conc. HNO₃ yields a yellow compound 'C', a strong acid. The number of oxygen atoms is present in compound 'C'_____.

यौगिक 'P' तनु HNO₃ के साथ नाइट्रोकरण पर दो समावयव (A) एवं (B) देता है। ये समावयव भाप आसवन द्वारा पृथक किए जा सकते हैं। समावयव (A) एवं (B) क्रमशः अंतराअणुक एवं अंतर अणुक हाइड्रोजन आबन्ध प्रदर्शित करते हैं। यौगिक (P) की सान्द्र HNO₃ के साथ अभिक्रिया पीले रंग का एक यौगिक 'C' बनाती है जो प्रबल अम्लीय है। यौगिक 'C' में उपस्थित ऑक्सीजन परमाणुओं की संख्या है / हैं

Ans. Official Answer NTA (7)

Question ID:101059

JEE Main June 2022 | 26 June Shift-1

$$OH \longrightarrow OH \longrightarrow NO_2$$

$$OH \longrightarrow OH \longrightarrow NO_2$$

$$OH \longrightarrow NO_2$$

Sol.

Picric acid (Yellow Compound)

30. The number of oxygens present in a nucleotide formed from a base, that is present only in RNA is ______ । केवल RNA में पाए जाने वाले क्षार से बने न्यूक्लिटाइड में उपस्थित ऑक्सीजन परमाणुओं की संख्या है _____ ।

Ans. Official Answer NTA (9)

Question ID:101060

Sol. Nucleotide formed by Uracil, the base present in RNA, is

The number of oxygen = 9

MATRIX JEE ACADEMY