JEE Main June 2022 Question Paper With Text Solution 24 June | Shift-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE Main June 2022 | 24 June Shift-2

120 g of an organic compound that contains only carbon and hydrogen gives 330 g of CO₂ and 270 g of water on complete combustion. The percentage of carbon and hydrogen, respectively are

(1) 25 and 75

(2) 40 and 60

(3) 60 and 40

(4) 75 and 25

एक कार्बनिक यौगिक जिसमें केवल कार्बन एवं हाइड्रोजन उपस्थित हैं, के $120~\mathrm{g}$ का पूर्ण दहन करने पर $330~\mathrm{g}$ CO_2 एवं $270~\mathrm{g}$ जल प्राप्त होता है। कार्बन एवं हाइड्रोजन का प्रतिशत क्रमश : है,

(1) 25 एवं 75

(2) 40 एवं 60

(3) 60 एवं 40

(4) 75 एवं 25

Ans. Official Answer NTA (4)

Question ID:1361

Sol. Mass of organic compound = 120 g

Mass of $CO_2 = 330 g$

Moles of
$$CO_2 = \frac{330}{44} = 7.5$$

Mass of carbon = $7.5 \times 12 = 90 \text{ gm}$

Percentage of C =
$$\frac{90 \times 100}{120} = 75\%$$

Mass of $H_2O = 270 g$

Moles of
$$H_2O = \frac{270}{18} = 15$$

Mass of hydrogen = $15 \times 2 = 30 \text{ gm}$

Percentage of H =
$$\frac{30 \times 100}{120}$$
 = 25%

2. The energy of one mole of photons of radiation of wavelength 300 nm is

(Given :
$$h = 6.63 \times 10^{-34} \text{ J s}, N_A = 6.02 \times 10^{23} \text{ mol}^{-1}, c = 3 \times 10^8 \text{ m s}^{-1}$$
)

(1) 235 kJ mol⁻¹

(2) 325 kJ mol⁻¹

(3) 399 kJ mol⁻¹

(4) 435 kJ mol⁻¹

300 nm तरंगदैर्ध्य वाले विकिरण के एक मोल फोटॉन की ऊर्जा है -

(दिया गया है :
$$h = 6.63 \times 10^{-34} \ J \ s, \ N_{_A} = 6.02 \times 10^{23} \ mol^{-1}, \ c = 3 \times 10^8 \ m \ s^{-1})$$

(1) 235 kJ mol⁻¹

(2) 325 kJ mol⁻¹

(3) 399 kJ mol⁻¹

(4) 435 kJ mol⁻¹

Ans. Official Answer NTA (3)

Question ID:1362

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

Wavelength of radiation = 300 nm Sol.

Photon energy =
$$\frac{hc}{\lambda}$$

= $\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{300 \times 10^{-9}}$
= 6.63×10^{-19} J

Energy of 1 mole of photons

=
$$6.63 \times 10^{-19} \times 6.02 \times 10^{23} \times 10^{-3}$$

= 399 kJ

The correct order of bond orders of C_2^{2-} , N_2^{2-} and O_2^{2-} is, respectively 3.

$$(1) \ C_2^{\ 2-} < N_2^{\ 2-} < O_2^{\ 2-} \ (2) \ O_2^{\ 2-} < N_2^{\ 2-} < C_2^{\ 2-} \ (3) \ C_2^{\ 2-} < O_2^{\ 2-} < N_2^{\ 2-} \ (4) \ N_2^{\ 2-} < C_2^{\ 2-} < O_2^{\ 2-} < O_2$$

$$(1) C_2^{2-} < N_2^{2-} < O_2^{2-} (2) O_2^{2-} < N_2^{2-} < C_2^{2-} (3) C_2^{2-} < O_2^{2-} < N_2^{2-} (4) N_2^{2-} < C_2^{2-} < O_2^{2-} <$$

Official Answer NTA (2) Ans.

Question ID:1363

Sol. Species Bond order
$$C_2^{2-}$$
 3 N_2^{2-} 2 O_2^{2-} 1

At 25°C and 1 atm pressure, the enthalpies of combustion are as given below: 4.

Subs tan ce	H_2	C(graphite)	$C_2H_6(g)$
$\frac{\Delta_{\rm c} {\rm H}^{\Theta}}{{\rm kJ mol}^{-1}}$	-286.0	-394.0	-1560.0

The enthalpy of formation of ethane is

Subs tan ce	H_2	C(graphite)	$C_2H_6(g)$
$\frac{\Delta_{\rm c} {\rm H}^{\Theta}}{{\rm kJ}{\rm mol}^{-1}}$	-286.0	-394.0	-1560.0

एथेन की विरचन एन्थैल्पी (enthalpy of formation) है -

 $(1) +54.0 \text{ kJ mol}^{-1}$ $(2) -68.0 \text{ kJ mol}^{-1}$

 $(3) - 86.0 \text{ kJ mol}^{-1}$ $(4) + 97.0 \text{ kJ mol}^{-1}$

Official Answer NTA (3) Ans.

MATRIX JEE ACADEMY

JEE Main June 2022 | 24 June Shift-2

Question ID:1364

Sol Given:

(i)
$$C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)\Delta H_{comb}^{\circ} = -1560.0 \text{ kJ/mole}$$

(ii)
$$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H_{comb}^{\circ} = -394.0 \text{ kJ/mole}$$

(iii)
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g) \Delta H_{comb}^{\circ} = -286.0 \text{ kJ/mole}$$

Target
$$2C(s) + 3H_2(g) \rightarrow C_2H_6(g) \Delta H_{rx^n}^{\circ} = \Delta H_f^{\circ}(C_2H_6, g)$$

$$\Delta H_r^{\circ} = \Delta H_c^{\circ} (reactant) - \Delta H_c^{\circ} (product)$$

$$= 2 \times (-394) + 3(-286) - (-1560)$$

$$=-788-858+1560$$

= -86.0 KJ/mole

- 5. For a first order reaction, the time required for completion of 90% reaction is 'x' times the half life of the reaction. The value of 'x' is (Given: ln 10 = 2.303 and log 2 = 0.3010)
 - (1) 1.12
- (2) 2.43
- (3) 3.32
- (4) 33.31

किसी प्रथम कोटि की अभिक्रिया के लिए उसे 90% पूर्ण होने में लगा समय अभिक्रिया की अर्ध आयु का 'x' गूना है। 'x' का मान है - (दिया गया है : $\ln 10 = 2.303$ एवं $\log 2 = 0.3010$)

- (1) 1.12 (2) 2.43
- (3) 3.32
- (4) 33.31

Official Answer NTA(3) Ans.

Question ID:1365

Sol.
$$T_{90\%} = \frac{2.303}{K} \log \left(\frac{100}{10} \right) = \frac{2.303}{K} \log 10$$

$$T_{50\%} = \frac{2.303}{K} \log \left(\frac{100}{50} \right) = \frac{2.303}{K} \log 2$$

$$\frac{T_{90\%}}{T_{50\%}} = \frac{\log 10}{\log 2} = \frac{1}{0.3010} = 3.32$$

- Metals generally melt at very high temperature. Amongst the following, the metal with the highest melting point 6. will be
 - (1) Hg
- (2)Ag
- (3) Ga
- (4) Cs

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

धातुएँ प्रायः अत्यन्त उच्च ताप पर पिघलती हैं। निम्नलिखित में से कौन-सा, सर्वाधिक गलनांक वाला धातु है ?

(1) Hg

(2)Ag

(3) Ga

(4) Cs

Ans. Official Answer NTA (2)

Question ID:1366

Sol. Hg, Ga, Cs are liquid near room temperature But Ag(silver) is solid.

7. Which of the following chemical reactions represents Hall-Heroult Process?

(1) $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$

(2) $2A1_{2}O_{3} + 3C \rightarrow 4A1 + 3CO_{2}$

(3) FeO + CO \rightarrow Fe + CO,

(4) $2[Au(CN)_2]^{-}_{(a0)} + Zn(s) \rightarrow 2Au(s) + [Zn(CN_4)]^{2-}$

निम्नलिखित में से कौन-सी रासायनिक अभिक्रिया हॉल-हेरॉल्ट प्रक्रम को निरूपित करती है ?

(1) $Cr_2O_3 + 2Al \rightarrow Al_2O_3 + 2Cr$

(2) $2A1_{2}O_{3} + 3C \rightarrow 4A1 + 3CO_{2}$

(3) FeO + CO \rightarrow Fe + CO,

(4) $2[Au(CN)_2]_{(aq)}^- + Zn(s) \rightarrow 2Au(s) + [Zn(CN_4)]^{2-}$

Ans. Official Answer NTA (2)

Question ID:1367

Sol. The electolysis of the molten mass is carried out in an electrolytic cell using carbon electrodes. The oxygen liberated at anode reacts with the carbon of anode producing CO and CO₂. The electrolytic reactions are:

Cathode:

$$Al^{3+}$$
 (melt) + $3e^- \rightarrow Al(1)$

Anode:

$$C(s) + O^{2-} (melt) \rightarrow CO(g) + 2e^{-}$$

$$C(s) + 2O^{2-}(melt) \rightarrow CO_{2}(g) + 4e^{-}$$

Net Reaction:

$$2Al_2O_3 + 3C \rightarrow 4Al + 3CO_2$$

8. In the industrial production of which of the following, molecular hydrogen is obtained as a by product?

(1) NaOH

- (2) NaCl
- (3) Na metal
- (4) Na,CO,

निम्नलिखित में से किसके औद्योगिक निर्माण में आण्विक हाइड्रोजन एक उपोत्पाद के रूप में प्राप्त होती है ?

(1) NaOH

- (2) NaCl
- (3) Na metal
- (4) Na₂CO₂

Ans. Official Answer NTA (1)

Ouestion ID:1368

Sol. Sodium hydroxide is generally prepared commercially by electrolysis of sodium chloride in castner Kellner cell.

At cathode: $Na + e^{-} \xrightarrow{Hg} Na - amalgum$

Anode: $Cl^- \longrightarrow \frac{1}{2} Cl_2 + e^-$

The Na-amalgam is treated with water to give sodium hydroxide and hydrogen gas:

2Na (amalgam) + $H_2O \rightarrow 2NaOH + H_2 + 2Hg$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry) JEE Main June 2022 | 24 June Shift-2

		L		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
9.	Which one of the following compounds is used as a chemical in certain type of fire extinguishers?						
	(1) Baking soda	(2) Soda ash	(3) Washing soda	(4) Caustic Soda			
	अग्निशामकों के एक विशेष प्रकार में, किस रसायन का उपयोग किया जाता है ?						
	(1) बेंकिंग सोडा	(2) सोडा ऐश	(3) वाशिंग सोडा	(4) कॉस्टिक सोडा			
Ans.	Official Answer NT	A(1)					
Questi	on ID:1369						
Sol.	Sodium hydrogencarbonate (Baking soda), NaHCO ₃ is used in the fire extinguishers.						
10.	PCl ₅ is well known, but NCl ₅ is not. Because,						
	(1) nitrogen is less reactive than phosphorous.						
	(2) nitrogen doesn't have d-orbitals in its valence shell.						
	(3) catenation tendency is weaker in nitrogen than phosphorous.						
	(4) size of phosphorous is larger than nitrogen.						
	$PCl_{_{5}}$ सर्वथा ज्ञात है परन्तु $NCl_{_{5}}$ नहीं। क्योंकि $-$						
	(1) नाइट्रोजन, फॉस्फोरस की अपेक्षा कम अभिक्रियाशील है।						
	(2) नाइट्रोजन के बाह्यतम कोश में d—कक्षक नहीं होते।						
	(3) नाइट्रोजन में फॉस्फोरस की तुलना में श्रृंखलन प्रवृत्ति कम होती है।						
	(4) नाइट्रोजन की तुलना में फॉस्फोरस का आकार बड़ा है।						
Ans.	Official Answer N						
Questi	ion ID:1370						
Sol.	Nitrogen do not have orbitals so it can ex		t do not expands it's oct	tet, while phosphorous have vacant 30			
11.	Transition metal complex with highest value of crystal field splitting (Δ_0) will be						
	$(1) \left[\text{Cr}(\text{H}_2\text{O})_6 \right]^{3+}$	(2) $[Mo(H_2O)_6]^{3+}$	(3) $[Fe(H_2O)_6]^{3+}$	$(4) [Os(H_2O)_6]^{3+}$			
	संक्रमण धातु संकुल रि	जेसमें क्रिस्टल क्षेत्र विपाटन	$(\Delta_{_{\! 0}})$ सर्वाधिक होगा $-$				
	(1) $[Cr(H_2O)_6]^{3+}$	(2) $[Mo(H_2O)_6]^{3+}$	(3) $[Fe(H_2O)_6]^{3+}$	$(4) [Os(H_2O)_6]^{3+}$			
Ans.	Official Answer N	TA (4)		- *			
Questi	on ID:1371						
Sol.	5d series member h	5d series member have more value of Δ_0 in comparison to 3d & 4d complexes.					
12.	Some gases are responsible for heating of atmosphere (green house effect). Identify from the following the						
	gaseous species wh	ich does not cause it.					
			(3) H ₂ O	(4) N_2			

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

वायुमंडल के गर्म होने के लिए (ग्रीन हाउस प्रभाव) कुछ गैसें उतरदायी हैं।

निम्नलिखित में से उस गैसीय स्पीशीज को पहिचानिए जो इसका कारण नहीं है।

- $(1) CH_{4}$
- $(2) O_{3}$
- $(3) H_{2}O$
- $(4) N_{2}$

Official Answer NTA (4) Ans.

Question ID:1372

Green house gases are CO₂, CH₄, Cholorofluoro carbon, O₃, N₂O, H₂O Sol.

Note: Gas, which is not a green house gas is nitrogen.

13. Arrange the following carbocations in decreasing order of stability.

(2)
$$A > B > C$$

निम्नलिखित कार्बोधनायनों को स्थायित्व के घटते हुए क्रम में व्यवस्थित कीजिए।

B

(1) A > C > B

(2) A > B > C

(3) C > B > A

(4) C > A > B

Official Answer NTA(1) Ans.

Answer by Matrix (BONUS)

Question ID:1373

Sol. The given carbocations are

Carbocation (A) is stabilised by hyperconjugation due to 4α hydrogen atoms. Carbocation (C) is also stabilised by hyperconjugation due to 4 α hydrogen atoms but destabilised by –I effect of O-atom.

Carbocation (B) is most stable as it is stabilised by resonance.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

$$(Resonance)$$

$$H$$

$$H$$

$$H$$

$$H$$

$$(Hyperconjugation)$$

 \therefore Correct decreasing order of stability is B > A > CNone of the given options is correct.

14. Given below are two statements,

Statement I: The presence of weaker π -bonds make alkenes less stable than alkanes.

Statement II: The strength of the double bond is greater than that of carbon-carbon single bond. In the light of the above statements, choose the correct answer from the options given below.

- (1) Both Statement I and Statement II are correct.
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

नीचे दो कथन दिए गए हैं -

कथन I: दुर्बल π —आबन्ध की उपस्थिति, ऐल्केनों की तुलना में, ऐल्कीनों को अस्थायी बनाती है। **कथन II:** कार्बन — कार्बन एकल आबन्ध से कार्बन—कार्बन द्विबन्ध की प्रबलता अधिक होती है। उपर्युक्त कथनों के प्रकाश में नीचे दिए गए विकल्पों में से **सही** उत्तर को चुनें:

- (1) कथन I एवं कथन II दोनों सही हैं।
- (2) कथन I एवं कथन II दोनों गलत हैं।
- (3) कथन I सही है परन्तु कथन II गलत है।
- (4) कथन I गलत है परन्तु कथन II सही है।

Ans. Official Answer NTA (1)

Ouestion ID:1374

Sol. The π -bond present is alkenes is weaker than σ -bond present in alkanes. That makes alkenes less stable than alkanes. Therefore, statement-I is correct.

Carbon-carbon double bond is stronger than Carbon-carbon single bond because more energy is required to

MATRIX JEE ACADEMY

JEE Main June 2022 | 24 June Shift-2

break 1 sigma and 1 pi bond than to break 1 sigma bond only. Therefore, statement-II is also correct.

15. Which of the following reagents / reactions will convert 'A' to 'B'?

$$H_{3}C$$
 (A)
 CH_{2}
 $H_{3}C$
 (B)

- (1) PCC oxidation
- (2) Ozonolysis
- (3) BH₃, H₂O₂/ OH followed by PCC oxidation
- (4) HBr, hydrolysis followed by oxidation by K₂Cr₂O₇.

निम्नलिखित में से कौन-सा अभिकर्मक / अभिक्रिया 'A' को 'B' में परिवर्तित करेगी :

$$H_3C$$
 (A)
 CH_2
 H_3C
 (B)

- (1) PCC ऑक्सीकरण
- (2) ओजोनी अपघटन
- (3) BH., H.O./ OH इसके उपरान्त PCC ऑक्सीकरण
- (4) HBr, जल अपघटन के उपरान्त K, Cr, O, द्वारा ऑक्सीकरण

Ans. Official Answer NTA (3)

Question ID:1375

Sol. CH_{3} CH_{2} CH_{2} CH_{2} CH_{2} CH_{2} CH_{3} CH_{2} CH_{3} CH_{3

- 16. Hex-4-ene-2-ol on treatment with PCC gives 'A'. 'A' on reaction with sodium hypoiodite gives 'B', which on further heating with soda lime gives 'C'. The compound 'C' is
 - (1) 2-pentene (2) proponaldehyde (3) 2-butene (4) 4-methylpent-2-ene हेक्स-4-इन-2-ऑल को PCC के साथ उपचारित करने पर 'A' प्राप्त होता है। 'A' सोडियम हाइपोआयोडाइट के साथ क्रिया करके 'B' देता है जो सोडा लाइम के साथ पुनः गर्म करने पर 'C' देता है। यौगिक 'C' है:

MATRIX JEE ACADEMY

JEE Main June 2022 | 24 June Shift-2

(1) 2-पेन्टीन

(2) प्रोपेनल्डिहाइड

(3) 2-ब्यूटीन

(4) 4-मेथिलपेंट-2-ईन

Ans. Official Answer NTA (3)

Question ID:1376

Sol.

- 17. The conversion of propan-1-ol to n-butylamine involves the sequential addition of reagents. The correct sequential order of reagents is
 - (1) (i) SOCl₂ (ii) KCN (iii) H₂/Ni, Na(Hg)/C₂H₅OH
 - (2) (i)HCl (ii) H₂/Ni, Na(Hg)/C₂H₅OH
 - (3) (i) SOCl, (ii) KCN (iii) CH₃NH,
 - (4) (i) HCl (ii) CH₃NH₂

प्रोपेनॉल से ब्यूटेनऐमीन के परिवर्तन में अभिकर्मकों को क्रमानुसार मिलाया जाता है। अभिकर्मकों का सही क्रम है -

- (1) (i) SOCl, (ii) KCN (iii) H₂/Ni, Na(Hg)/C₂H₅OH
- (2) (i)HCl (ii) H₂/Ni, Na(Hg)/C₂H₅OH
- (3) (i) SOCl₂ (ii) KCN (iii) CH₃NH₂
- (4) (i) HCl (ii) CH₃NH₂

Ans. Official Answer NTA (1)

Question ID:1377

$$CH_{3}-CH_{2}-CH_{2}-OH \longrightarrow CH_{3}-CH_{2}-CH_{2}-CH_{2}NH_{2}$$
Propanol n-Butanamine
$$SOCl_{2} \downarrow \qquad \qquad \uparrow H_{2}/Ni, Hg/C_{2}H_{5}OH$$

$$CH_{3}-CH_{2}-CH_{2}-CI \xrightarrow{KCN} CH_{3}-CH_{2}-CH_{2}-CN$$

- 18. Which of the following is not an example of a condensation polymer?
 - (1) Nylon 6,6
- (2) Decron
- (3) Buna-N
- (4) Silicons

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

निम्नलिखित में से कौन-सा संघनन बहुलक का एक उदाहरण नहीं है ?

- (1) नाइलॉन 6,6
- (2) डेक्रॉन
- (3) ब्यूना-N
- (4) सिलिकोन

Ans. Official Answer NTA (3)

Ouestion ID:1378

Sol. Buna-N is an addition copolymer of 1,3-butadiene and acrylonitrile.

$$CH_{2} = CH - CH = CH_{2} + CH_{2} = CH$$

$$CN$$

$$[-CH_{3} - CH = CH - CH_{2} - CH_{2} - CH -]_{n}$$

$$Buna-N$$

$$CN$$

19. The structure shown below is of which well-known drug molecule?

- (1) Ranitidine
- (2) Seldane
- (3) Cimetidine
- (4) Codeine

नीचे दिखाई गयी संरचना किस प्रसिद्ध औषध अणु की है ?

- (1) रैनिटिडीन
- (2) सेलडेन
- (3) सिमेटिडीन
- (4) कोडीन

Ans. Official Answer NTA (3)

Question ID:1379

Sol. The given structure is that of cimetidine which is well known antacid.

20. In the flame test of a mixture of salts, a green flame with blue centre was observed. Which one of the following cations may be present?

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

 $(1) Cu^{2+}$

 $(2) Sr^{2+}$

 $(3) Ba^{2+}$

 $(4) Ca^{2+}$

लवणों के एक मिश्रण के ज्वाला परीक्षण में नीले केन्द्र वाली हरी ज्वारी देखी गई। निम्नलिखित में से कौन—सा धनायन उपस्थित हो सकता है ?

 $(1) Cu^{2+}$

 $(2) Sr^{2+}$

 $(3) Ba^{2+}$

 $(4) \text{ Ca}^{2+}$

Ans. Official Answer NTA (1)

Question ID:1380

Sol. Cupric salts give green flame with blue centre. The colour of other salts are

 Sr^{2+}

Crimson red

 Ca^{2+}

Brick red

 Ba^{2+}

Green

21. At 300 K. a sample of 3.0 g of gas A occupies the same volume as 0.2 g of hydrogen at 200 K at the same pressure. The molar mass of gas A is _____ g mol⁻¹ (nearest integer) Assume that the behaviour of gases as ideal.

(Given: The molar mass of hydrogen (H₂) gas is 2.0 g mol⁻¹)

 $300~{\rm K}$ पर गैस ${\rm A}$ के $3.0~{\rm g}$ का नमूना उतना ही आयतन घेरता है जितना समान दाब एवं $200~{\rm K}$ पर $0.2~{\rm g}$ हाइड्रोजन। गैस

A का मोलर द्रव्यमान है : g mol-1 (निकटतम पूर्णांक)

(दिया गया है: हाइड्रोजन (H₂) गैस का मोलर द्रव्यमान 2.0 g mol⁻¹ है)

Ans. Official Answer NTA (45)

Question ID:1381

Sol. Given: Ideal gas A and H, gas at same pressure and volume.

From ideal gas equation pv = nRT

$$\mathbf{n}_1 \mathbf{T}_1 = \mathbf{n}_2 \mathbf{T}_2$$

$$\frac{3}{\text{GMM of A}} \times 300 = \frac{0.2}{2} = 200$$

GMM of A = 45 g/mole

22. A company dissolves 'x' amount of CO_2 at 298 K in 1 litre of water to prepare soda water. $X = ___ \times 10^{-1}$ 3 g. (nearest integer)

(Given: partial pressure of CO_2 at 298 K = 0.835 bar.

Henry's law constant for CO, at 298K = 1.67 kbar.

Atomic mass of H, C and O is 1, 12, and 6 g mol⁻¹, respectively)

एक कम्पनी सोडा वाटर बनाने के लिए $298~\mathrm{K}$ पर $1~\mathrm{ell}$ लीटर जल में CO_2 की 'x' मात्रा को घोलती है । $\mathrm{X} =$ _____ $\times 10^{-3}~\mathrm{g}$.

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

(निकटतम पूर्णांक)

(दिया गया है : 298 K पर CO, का आंशिक दाब है = 0.835 bar.

298K पर CO, के लिए हेनरी नियम स्थिरांक = 1.67 kbar.

H, C एवं O के परमाणु द्रव्यमान क्रमशः 1, 12 एवं 6 g mol-1 हैं)

Ans. Official Answer NTA (1221 or 1222)

Answer by Matrix is (1221 to 1223)

Question ID:1382

Sol. Using Henry's law

$$P_{gas} = K_H X_{gas}$$

$$[0.835] = 1.67 \times 10^{3} \left[\frac{n_{\text{CO}_{2}}}{n_{\text{CO}_{2}} + 55.5} \right]$$

$$10^{-3} \times [0.5] = \frac{n_{\text{CO}_2}}{n_{\text{CO}_3} + 55.5}$$

$$\frac{n_{\rm CO_2}}{55.5} = 0.5 \times 10^{-3}$$

$$n_{CO_2} = 27.75 \times 10^{-3} \text{ mole}$$

$$n_{CO_2} = (27.75 \times 10^{-3}) \times 44 = 1221 \times 10^{-3} \text{ gram}$$

23. PCl₅ dissociates as

$$PCl_{5}(g) \Longrightarrow PCl_{3}(g) + Cl_{2}(g)$$

5 moles of PCl₅ are placed in a 200 litre vessel which contains 2 moles of N₂ and is maintained at 600

K. The equilibrium pressure is 2.46 atm. The equilibrium constant K_p for the dissociation of PCl_5 is

$$\times$$
 10⁻³. (nearest integer)

(Given: $R = 0.082 L atm K^{-1} mol^{-1}$; Assume ideal gas behaviour)

PCl₅ इस प्रकार वियोजित होता है

$$PCl_{5}(g) \Longrightarrow PCl_{3}(g) + Cl_{2}(g)$$

200~L के पात्र जिसमें $\rm N_2$ के $\rm 2$ मोल हैं, में $\rm PCl_{_5}$ के $\rm 5$ मोलों को मिलाकर पात्र को $\rm 600~K$ पर रख दिया जाता है। साम्य दाब

 $2.46~{\rm atm}~{\rm \ref{k}} \cdot {\rm PCl}_{\varsigma}$ के वियोजन का साम्य स्थिरांक ${\rm K}_{\rm p}$ है: _____ $imes 10^{-3} \cdot {\rm (}$ निकटतम पूर्णांक में)

(दिया गया है: $R = 0.082 \; L \; atm \; K^{-1} \; mol^{-1}$, आदर्श गैस व्यवहार मान लीजिए।)

Ans. Official Answer NTA (1107)

MATRIX JEE ACADEMY

JEE Main June 2022 | 24 June Shift-2

Question ID:1383

Sol. Given: 2 mole of N₂ gas was present as inert gas.

Equilibrium pressure = 2.46 atm

$$PCl_{5}(g) \Longrightarrow PCl_{3}(g) + Cl_{5}(g)$$

$$t = 0$$

$$t = Eq^m$$

$$5-x$$

from ideal gas equation

$$PV = nRT$$

$$2.46 \times 200 = (5 - x + x + x + 2) \times 0.082 \times 600$$

$$x = 3$$

$$K_{P} = \frac{n_{PCl_{3}} \times n_{Cl_{2}}}{n_{PCl_{5}}} \times \left[\frac{P_{total}}{n_{total}}\right]$$

$$\frac{3\times3}{2}\times\frac{2.46}{10} = 1.107 = 1107\times10^{-3}$$

The resistance of a conductivity cell containing 0.01 M KCl solution at 298 K is 1750 Ω . If the conductivity of 0.01 M KCl solution at 298 K is 0.152 × 10⁻³ S cm⁻¹, then the cell constant of the conductivity cell is _____ × 10⁻³ cm⁻¹.

किसी चालकता सेल जिसमें $0.01~{
m M~KCl}$ विलयन भरा है, का प्रतिरोध $298~{
m K}$ पर $1750~{
m \Omega}$ है। यदि $0.01~{
m M~KCl}$ विलयन की चालकता $298~{
m K}$ पर $0.152\times 10^{-3}~{
m S~cm^{-1}}$ है, तो चालकता सेल का स्थिरांक है: $\times~10^{-3}~{
m cm^{-1}}$.

Ans. Official Answer NTA (266)

Question ID:1384

Sol. For KCl solution \Rightarrow R = 1750 Ω

$$K = 0.152 \times 10^{-3} \text{ S cm}^{-1}$$

$$K = \left(\frac{\ell}{a}\right) \frac{1}{R}$$

Cell constant =
$$\left(\frac{\ell}{a}\right) = (K) \times R$$

$$= [0.152 \times 10^{-3} \times 1750]$$

$$= 266 \times 10^{-3} \text{ cm}^{-1}$$

25. When 200 mL of 0.2 M acetic acid is shaken with 0.6 g of wood charcoal, the final concentration of acetic acid after adsorption is 0.1 M. The mass of acetic acid adsorbed per gram of carbon is ______ g. 0.2 M ऐसीटिक अम्ल के 200 mL को 0.6 g काष्ट चारकोल के साथ हिलाते हैं, तो अधिशोषण के पश्चात् अंतिम सान्द्रता 0.1 M हो जाती है। प्रति ग्राम कार्बन पर अधिशोषित ऐसीटिक अम्ल का द्रव्यमान है _____ g।

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

Question Paper With Text Solution (Chemistry)

JEE Main June 2022 | 24 June Shift-2

Ans. Official Answer NTA(2)

Sol. Mass of wood charcoal = 0.6 g

Initial moles of acetic acid = $0.2 \times 0.2 = 0.04$

Final moles of acetic acid = $0.1 \times 0.2 = 0.02$

Moles of acetic acid adsorbed = 0.04 - 0.02 = 0.02

Mass of acetic acid adsorbed per gm of charcoal = $\frac{0.02 \times 60}{0.6}$ = 2.0 g

Question ID:1385

- 26. (a) Baryte (b) Galena (c) Zinc blende and (d) Copper pyrites. How many of these minerals are sulphide based?
 - (a) बेराइट (b) गैलेना (c) जिंक ब्लेड एवं (d) कॉपर पाइराइट इन खनिजों में से कितने सल्फाइड आधारित हैं ?

Ans. Official Answer NTA(3)

Question ID:1386

Sol. Baryte BaSO₄

Galena PbS
Zinc blende ZnS

Copper pyrites CuFeS,

Of the given minerals, only 3 are sulphide based.

27. Manganese (VI) has ability to disproportionate in acidic solution. The difference in oxidation states of two ions it forms in acidic solution is ______.

मैंगनीज (VI) अम्लीय माध्यम में असमानुपातन के गुण रखता है। अम्लीय विलयन में बने दोनों आयनों की ऑक्सीकरण अवस्थाओं का अंतर है।

Ans. Official Answer NTA(3)

Question ID:1387

Sol. MnO_4^{2-} disproportionates in a neutral or acidic solution to give MnO_4^{-} and Mn^{+4}

$$3MnO_4^{2-} + 3H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$$

O.S. of Mn in $MnO_4^- = +7$

O.S. of Mn in MnO₂ = +4

difference = 3

28. 0.2 g of an organic compound was subjected to estimation of nitrogen by Dumas method in which volume of N_2 evolved (at STP) was found to be 22.400 mL. The percentage of nitrogen in the compound is _____.

[nearest integer]

(Given : Molar mass of N_2 is 28 g mol⁻¹, Molar volume of N_2 at STP : 22 .4 L)

किसी कार्बनिक यौगिक के $0.2\,\mathrm{g}$ के ड्यूमा विधि द्वारा नाइट्रोजन आकलन में निर्मुक्त हुई $\mathrm{N_2}(\mathrm{STP}\,\mathrm{TV})$ का आयतन $22.400\,\mathrm{m}$

MATRIX JEE ACADEMY

JEE Main June 2022 | 24 June Shift-2

mL पाया जाता है। यौगिक में नाइट्रोजन का प्रतिशत है ।[निकटतम पूर्णांक]

(दिया गया है: N_2 का मोलर द्रव्यमान $28~{\rm g~mol^{-1}}$, STP पर N_2 का मोलर आयतन $22~.4~{\rm L}$ है।)

Ans. Official Answer NTA (14)

Question ID:1388

Sol. Vol of N, gas = 22.4 ml at STP

Mole of
$$N_2$$
 gas = $\frac{22.4}{22400} = \frac{1}{1000}$ mole

Weight of
$$N_2$$
 gas = $\frac{1}{1000} \times 28$

% of N in organic compound is $\frac{28}{1000} \times \frac{100}{0.2} = 14\%$

29.
$$\xrightarrow{\text{NaOH}} P$$
(Major Product

Consider the above reaction. The number of π electrons present in the product 'P'

$$\begin{array}{c}
\text{Cl} \\
\hline
\text{NaOH} \\
\hline
\text{H}_2\text{O}
\end{array}$$
(Major Product)

उपर्युक्त अभिक्रिया पर विचार करें। उत्पाद 'P' में $\pi-$ इलेक्ट्रॉनों की संख्या है।

Ans. Official Answer NTA(2)

Question ID:1389

Sol.
$$NaOH$$
 HO
 $NaOH$
 H_2O
 P (Major product)

The given reaction undergoes nucleophilic substitution by S_N^2 mechanism at room temperature

 \therefore No. of π electrons present in P = 2

30. In alanylglycylleucylalanylvaline, the number of peptide linkages is ______. ऐलानिलग्लाइसिलल्यूसिलऐलानिलवैलीप में पेप्टाइड बंधों की संख्या है।

Ans. Official Answer NTA (4)

Question ID:1390

Sol. The given pentapeptide is

ALA-GLY-LEU-ALA-VAL MATRIX JEE ACADEMY

It has 4 peptide linkages : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

JEE Main June 2022 | 24 June Shift-2

MATRIX JEE ACADEMY