JEE Main February 2021 Question Paper With Text Solution 24 Feb. | Shift-1

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE Main February 2021 | 24 Feb. Shift-1

JEE MAIN FEB. 2021 | 24TH FEB SHIFT-1 SECTION - A

1. Identify products A and B.

O
$$\parallel$$
 (3) A : OHC – $CH_2CH_2CH_2 - C - CH_3$

B: CH₃

B:
$$HOOC - CH_2CH_2CH_2 - C - CH_3$$

Ans. Offical Answer NTA (1)

2. Al_2O_3 was leached with alkali to get X. The solution of X on passing of gas Y, forms Z.

X, Y and Z respectively are:

(1)
$$X = Al(OH)_3$$
, $Y = CO_2$, $Z = Al_2O_3$

(2)
$$X = Na[Al(OH)_4], Y = SO_2, Z = Al_2O_3$$

(3)
$$X = Al(OH)_3$$
, $Y = SO_2$, $Z = Al_2O_3$, xH_2O

(4)
$$X = Na[Al(OH)_4], Y = CO_2, Z = Al_2O_3.xH_2O$$

Ans. Offical Answer NTA (4)

MATRIX JEE ACADEMY

JEE Main February 2021 | 24 Feb. Shift-1

Sol.
$$Al_2O_3 + NaOH \longrightarrow Na[Al(OH)_4]$$

'X'

 $Na[Al(OH)_4]$, + $CO_2 \longrightarrow Al_2O_3$. xH_2O

X

 \mathbf{Z}

3. What is the final product (major) 'A' in the given reaction?

$$\begin{array}{c} CH_{3} & OH \\ CH_{3} & HCI & 'A' \\ (major product) \\ \end{array}$$

$$\begin{array}{c} CH_{3} & CH \\ CH_{3} & CH \\ \end{array}$$

$$\begin{array}{c} CH_{3} & CH \\ CH_{2} - CH_{3} \\ \end{array}$$

$$\begin{array}{c} CH_{3} & CH \\ \end{array}$$

Ans. Offical Answer NTA (2)

Sol.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_5 CH

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

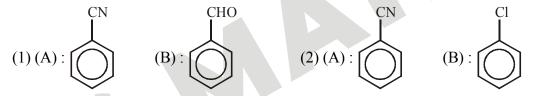
Question Paper With Text Solution (Chemistry)

JEE Main February 2021 | 24 Feb. Shift-1

- 4. Out of the following, which type of interaction is responsible for the stabilisation of α -helix structure of proteins?
 - (1) Ionic bonding

(2) vander Waals forces

(3) Hydrogen bonding


(4) Covalent bonding

Ans. Offical Answer NTA (3)

- Sol. α -helix structure of protein is due to H-bonding between -C and NH group of peptide bond.
- 5. 'A' and 'B' in the following reactions are:

$$\begin{array}{c}
NH_{2} \\
\hline
NaNO_{2}/HCl \\
\hline
KCN
\end{array}$$

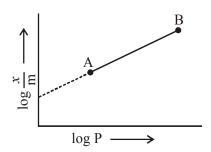
$$\begin{array}{c}
SnCl_{2}/HCl/H_{3}O^{+} \\
\end{array}$$
(B)

Ans. Offical Answer NTA (1)

Sol.
$$\begin{array}{c}
NH_2 \\
NaNO_2/HCl
\end{array}$$

$$\begin{array}{c}
KCN \\
\hline
(Stephen reaction)
\end{array}$$

$$\begin{array}{c}
CN \\
\hline
(Stephen reaction)
\end{array}$$


$$\begin{array}{c}
CHO \\
\hline
(Stephen reaction)
\end{array}$$

MATRIX JEE ACADEMY

JEE Main February 2021 | 24 Feb. Shift-1

6. In Freundlich adsorption isotherm, slope of AB line is:

(1) $\log n$ with (n > 1)

(2) $\frac{1}{n}$ with $\left(\frac{1}{n} = 0 \text{ to } 1\right)$

(3) n with (n, 0.1 to 0.5)

(4) $\log \frac{1}{n}$ with (n < 1)

Ans. Offical Answer NTA (2)

Sol. According to freundlich

$$\frac{x}{m} = k(p)^{1/n}$$

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log p$$

Hence slope is
$$\frac{1}{n}$$
 with $\left(\frac{1}{n} = 0 \text{ to } 1\right)$

7. Which of the following compound gives pink colour on reaction with phthalic anhydride in conc. H₂SO₄ followed by treatment with NaOH?

Ans. Offical Answer NTA (4)

8. Which of the following reagent is used for the following reaction?

CH₃CH₂CH₃ —[?] → CH₃CH₂CHO

(Phenolphthalein colourless)

(1) Copper at high temperature and pressure (2) Manganese acetate

(3) Molybdenum oxide

(4) Potassium permanganate

(Pink colour)

Ans. Offical Answer NTA (3)

Sol. $CH_3CH_2CH_3 \xrightarrow{Mo_2O_3} CH_3CH_2CHO$

9. The gas released during anaerobic degradation of vegetation may lead to:

(1) Ozone hole

(2) Global warming and cancer

(3) Acid rain

(4) Corrosion of metals

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

(Colourless)

Question Paper With Text Solution (Chemistry)

JEE Main February 2021 | 24 Feb. Shift-1

Ans. Offical Answer NTA (2)

Sol. During anaerobic degradation of vegetation, methane is produced which is a greehouse gas and can lead to global warming.

10. The major components in "Gun Metal" are:

(1) Cu, Zn and Ni

(2) Cu, Sn and Zn

(3) Al, Cu, Mg and Mn

(4) Cu, Ni and Fe

Ans. Offical Answer NTA (2)

Sol. Composition of Gun Metal is

88% Cu + 10% Sn + 2% Zn

11. What is the major product formed by HI on reaction with

Ans. Offical Answer NTA (2)

Sol.
$$CH_{3} \xrightarrow{C} C - CH = CH_{2} \xrightarrow{\bigoplus_{H}} CH_{3} \xrightarrow{C} C - CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{Methyl} CH_{3} - CH_{3} \xrightarrow{\bigoplus_{Shift}} CH_{3} - CH_{3} \xrightarrow{G} CH_{3} \xrightarrow{G} CH_{3} \xrightarrow{G} CH_{3}$$

12. Match List I with List II.

List I (Monomer Unit)

List II (Polymer)

(a) Caprolactum

(i) Natural rubber

- (b) 2-Chloro-1,3-butadiene
- (ii) Buna-N

(c) Isoprene

(iii) Nylon 6

(d) Acrylonitrile

(iv) Neoprene

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Choose the correct answer from the options given below:

$$(1)$$
 (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (ii), (d) \rightarrow (i)

$$(2)$$
 (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (iv), (d) \rightarrow (iii)

$$(3)$$
 (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (i), (d) \rightarrow (ii)

$$(4)$$
 (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iii), (d) \rightarrow (iv)

Offical Answer NTA (3) Ans.

Polymer	Monomer unit
Nylon 6	Caprolactum
Buna-N	Acrylonitrile
Natural rubber	Isoprene

Sol.

13. Which of the following are isostructural pairs?

- (A) SO_4^{2-} and CrO_4^{2-} (B) $SiCl_4$ and $TiCl_4$
- (C) NH₃ and NO₃
- (D) BCl, and BrCl,

- (1) A and B only
- (2) C and D only
- (3) A and C only
- (4) B and C only

Ans. Offical Answer NTA (1)

Sol.

Tetrahedral

Tetrahedral

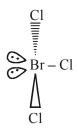
Tetrahedral

Tetrahedral

$$H\overset{\ddot{N}}{\underset{H}{\mid}}H$$

Pyramidal

MATRIX JEE ACADEMY



JEE Main February 2021 | 24 Feb. Shift-1

Trigonal planar

Trigonal planar

T-Shape

14. (A)
$$HOC1 + H_2O_2 \rightarrow H_3O^+ + C1^- + O_2$$

(B)
$$I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$$

Choose the correct option.

- (1) H₂O₂ acts as reducing agent in equations (A) and (B).
- (2) H₂O₂ acts as oxidising agent in equations (A) and (B).
- (3) H₂O₂ acts as oxidizing and reducing agent respectively in equations (A) and (B).
- (4) H₂O₂ acts as reducing and oxidising agent respectively in equations (A) and (B).

Ans. Offical Answer NTA (1)

Sol.
$$HOC1 + H_2O_2 \longrightarrow H_3O^{\oplus} + C1^{\Theta} + O_2$$

$$\underset{Agent}{\text{Oxidising}} \underset{Agent}{\text{Reducing}}$$

$$I_{2} + H_{2}O_{2} + 2OH^{\Theta} \longrightarrow 2I^{\Theta} + 2H_{2}O + O_{2}$$
Oxidising Reducing Agent Agent

In both the reactions H₂O₂ is oxidised to O₂ hence it acts as reducing agent.

15. The product formed in the first step of the reaction of

CH₃—CH₂—CH —CH₂—CH —CH₃ with excess Mg/Et₂O(Et =
$$C_2H_5$$
) is : Br

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main February 2021 | 24 Feb. Shift-1

(4)
$$CH_3$$
— $CH < CH_2$
 CH — CH_3

Ans. Offical Answer NTA (1)

Sol.
$$CH_3$$
— CH_2 — CH — CH_2 — CH — CH_3
 $MgBr$
 CH_3CH_2 — CH — CH_2 — CH — CH_3
 $MgBr$
 $MgBr$
 CH_3CH_2 — CH — CH_2 — CH — CH_3
 $MgBr$

16. In the following reaction the reason why meta-nitro product also formed is:

- (1) NH₂ group is highly meta-directive
- (2) low temperature
- (3) NO, substitution always takes place at meta-position
- (4) Formation of anilinium ion
- Ans. Offical Answer NTA (4)
- Sol. In presence of acid, NH_2 is protonated and becomes NH_3 (anilinium ion) which is meta directing in nature hence meta nitro product is formed.
- 17. Which of the following ore is concentrated using group 1 cyanide salt?
 - (1) Malachite
- (2) Sphalerite
- (3) Calamine
- (4) Siderite

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main February 2021 | 24 Feb. Shift-1

Ans. Offical Answer NTA (2)

Sol. (1) Malachite :- $CuCO_3 \cdot (Cu(OH)_2)$

(2) Sphalerite :- ZnS

(3) Calamine :- ZnCO₃

(4) Siderite :- FeCO₃

Sphalerite can be dissolved in Ist group cyanide salt i.e. NaCN, KCN

$$ZnS + 4NaCN \longrightarrow Na_2[Zn(CN)_4] + Na_2S$$

Soluble in water

18. The electrode potential of M^{2+}/M of 3d-series elements shows positive value for :

- (1) Fe
- (2) Zn
- (3) Co
- (4) Cu

Ans. Offical Answer NTA (4)

Sol.
$$E_{Cu^{2+}/Cu}^{\circ} = 0.34$$

$$E_{Zn^{2+}/Zn}^{o} = -0.76$$

$$E^{\circ}_{Co^{2+}/Co} = -0.28$$

$$E_{Fe^{2+}/Fe}^{o} = -0.44$$

19. Consider the elements Mg, Al, S, P and Si, the correct increasing order of their first ionization enthalpy

$$(1) Al \le Mg \le Si \le S \le P$$

(2)
$$Mg < Al < Si < S < P$$

(3)
$$Al < Mg < S < Si < P$$

(4)
$$Mg < Al < Si < P < S$$

Ans. Offical Answer NTA (1)

Sol. Correct order of first ionization enthalpy is

$$Al < Mg < Si < S < P$$

20. Given below are two statements:

Statement I: Colourless cupric metaborate is reduced to cuprous metaborate in a luminous flame.

Statement II: Cuprous metaborate is obtained by heating boric anhydride and copper sulphate in a non-luminous flame.

MATRIX JEE ACADEMY

JEE Main February 2021 | 24 Feb. Shift-1

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) Statement I is false but Statement II is true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

Ans. Offical Answer NTA (4)

Sol.
$$CuSO_4 \xrightarrow{A,B_2O_3} Cu(BO_2)_2 \xrightarrow{C,\Delta} Cu + CO + B_2O_3$$

$$Blue$$
Cupric metaborate

SECTION - B

1. For the reaction $A_{(g)} \to B_{(g)}$, the value of the equilibrium constant at 300 K and 1 atm is equal to 100.0. The value of $\Delta_r G^{\circ}$ for the reaction at 300 K and 1 atm in J mol⁻¹ is -xR, where x is _____. (Rounded off to the nearest integer)

$$[R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \text{ and } \ln 10 = 2.3)$$

Ans. Offical Answer NTA (1380)

Sol.
$$\Delta G^{\circ} = -RT \ln(K_{eq})$$

 $-xR = -R \times 300 \ln (100)$
 $x = 300 \times 2 \times 2.3$
 $x = 600 \times 2.3$
 $= 1380$

2. At 1990 K and 1 atm pressure, there are equal number of Cl_2 molecules and Cl atoms in the reaction mixture. The value of K_p for the reaction $Cl_{2(g)} \rightleftharpoons 2Cl_{(g)}$ under the above conditions is $x \times 10^{-1}$. The value of x is ______. (Rounded off to the nearest integer)

Ans. Offical Answer NTA (5)

Sol.
$$Cl_2 \Longrightarrow 2Cl$$
 (g) (g)

: Number of Cl atoms and Cl, molecules is same hence

MATRIX JEE ACADEMY

$$P_{Cl} = P_{Cl}$$

$$P_{Cl} = P_{Cl_2} = 1$$

$$P_{Cl} = \frac{1}{2}$$

$$K_p = \frac{(P_{Cl})^2}{P_{Cl_2}} = \frac{(\frac{1}{2})^2}{\frac{1}{2}} = \frac{1}{2} = 5 \times 10^{-1}$$

$$x = 5$$

3. A proton and a Li^{3+} nucleus are accelerated by the same potential. If $\lambda_{\text{Li}^{3+}}$ and λ_{p} denote the de Broglie wavelengths of Li^{3+} and proton respectively, then the value of $\frac{\lambda_{\text{Li}^{3+}}}{\lambda_{\text{p}}}$ is $x \times 10^{-1}$.

The value of x is ______ . (Rounded off to the nearest integer)

[Mass of $Li^{3+} = 8.3$ mass of proton]

Ans. Offical Answer NTA (2)

Sol.
$$\lambda = \frac{h}{\sqrt{2mk.E.}}$$

$$\lambda = \frac{h}{\sqrt{2mqv}}$$

$$\frac{\lambda_{\text{Li}^{3+}}}{\lambda_{\text{proton}}} = \sqrt{\frac{m_{\text{proton}} \ q_{\text{proton}}}{m_{\text{Li}^{3+}} \times q_{\text{Li}^{3+}}}}$$

$$\frac{\lambda_{Li^{3+}}}{\lambda_p} = \sqrt{\frac{1}{8.3 \times 3}}$$

$$\frac{\lambda_{Li^{3+}}}{\lambda_p} = \sqrt{\frac{1}{8.3 \times 3}} = \sqrt{\frac{1}{24.9}}$$

4. The coordination number of an atom in a body-centered cubic structure is ______.

[Assume that the lattice is made up of atoms.]

Ans. Offical Answer NTA (8)

Sol. Coordination number of an atom in BCC structure is 8

MATRIX JEE ACADEMY

JEE Main February 2021 | 24 Feb. Shift-1

5. When 9.45 g of ClCH₂COOH is added to 500 mL of water, its freezing point drops by 0.5°C. The dissociation constant of ClCH₂COOH is $x \times 10^{-3}$. The value of x is ______.

(Rounded off to the nearest integer)

$$[K_{f(H_2O)} = 1.86 \text{ K kg mol}^{-1}]$$

Ans. Offiwcal Answer NTA (35)

Answer by Matrix is (36)

Sol.
$$\Delta T_f = i k_f m$$

$$0.5 = i \times 1.86 \times \frac{9.45}{94.5} \times 1000$$

$$i = \frac{5}{2 \times 1.86}$$

$$\frac{5}{2 \times 1.86} = 1 + \alpha (n-1)$$

$$\frac{2.5}{1.86} = 1 + \alpha$$

$$\alpha = \frac{2.5}{1.86} - 1$$

$$\alpha = 0.344$$

$$k_a = \frac{C\alpha^2}{1-\alpha} = \frac{(0.2)\times(0.344)^2}{1-0.344} = 36.07\times10^{-3}$$

6. Gaseous cyclobutene isomerizes to butadiene in a first order process which has a 'k' value of $3.3 \times 10^{-4} \, \text{s}^{-1}$ at 153°C. The time in minutes it takes for the isomerization to proceed 40% to completion at this temperature is ______ . (Rounded off to the nearest integer)

Ans. Offical Answer NTA (26)

Sol.
$$kt = 2.303 \log \frac{C_0}{C_t}$$

$$3.3 \times 10^{-4} \times t = 2.303 \log \frac{100}{60}$$

$$t = \frac{2.303}{3.3 \times 10^{-4}} \log \frac{5}{3}$$

MATRIX JEE ACADEMY

Question Paper With Text Solution (Chemistry)

JEE Main February 2021 | 24 Feb. Shift-1

$$t = \frac{2.303 \times 10^4}{3.3 \times 60} \times 0.22$$

= 25.58 minutes

7. The stepwise formation of $[Cu(NH_3)_a]^{2+}$ is given below:

$$Cu^{2+} + NH_3 \xrightarrow{K_1} [Cu(NH_3)]^{2+}$$

$$[Cu(NH_3)^{2+} + NH_3 \xrightarrow{K_2} [Cu(NH_3)_2]^{2+}$$

$$[Cu(NH_3)_2]^{2+} + NH_3 \xrightarrow{K_3} [Cu(NH_3)_3]^{2+}$$

$$[Cu(NH_3)_3]^{2+} + NH_3 \xrightarrow{K_4} [Cu(NH_3)_4]^{2+}$$

The value of stability constants K_1 , K_2 , K_3 and K_4 are 10^4 , 1.58×10^3 , 5×10^2 and 10^2 respectively. The overall equilibrium constants for dissociation of $[Cu(NH_3)_4]^{2+}$ is $x \times 10^{-12}$. The value of x is ______. (Rounded off to the nearest integer)

Ans. Offical Answer NTA (1)

Sol. Overall equilibrium constant for the formation of $[Co(NH_3)_4]^{2+} = k_1 \times k_2 \times k_3 \times k_4$

$$= 10^{4} \times 1.58 \times 10^{3} \times 5 \times 10^{2} \times 10^{2}$$
$$= 5 \times 1.58 \times 10^{11}$$

overall equilibrium constant for dissociation of $[\text{Co(NH}_3)_4]^{2+} = \frac{1}{5 \times 1.58 \times 10^{11}} = 1.26 \times 10^{-12}$

- 8. Number of amphoteric compounds among the following is...........
 - (1) BeO
- (2) BaO
- (3) Be(OH),
- $(4) Sr(OH)_2$

Ans. Offical Answer NTA (2)

Sol. BeO → Amphoteric

$$Be(OH)_2 \rightarrow Amphoteric$$

$$Sr(OH)_2 \rightarrow Basic$$

JEE Main February 2021 | 24 Feb. Shift-1

- 9. 4.5 g of compound A (MW = 90) was used to make 250 mL of its aqueous solution. The molarity of the solution in M is $x \times 10^{-1}$. The value of x is ______. (Rounded off to the nearest integer)
- Ans. Offical Answer NTA (2)
- Sol. Molarity = $\frac{4.5}{\frac{90}{250}} \times 1000$ = $\frac{1}{20} \times 4 = \frac{1}{5} = 2 \times 10^{-1}$

Hence x = 2

10. The reaction of sulphur in alkaline medium is given below:

$$S_{g(s)} + a OH^{-}_{(aq)} \longrightarrow b S^{2-}_{(aq)} + c S_2 O_3^{2-}_{(aq)} + d H_2 O_{(I)}$$

The values of 'a' is _____. (Integer answer)

- Ans. Offical Answer NTA (12)
- Sol. $S_8 + aOH^{\Theta}(aq.) \longrightarrow b S^{2-}(aq.) + c S_2 O_3^{2-}(aq) + d H_2 O(\ell)$

$$\begin{array}{c|c}
 & 16 \\
S_8 + S_8 + OH^{\Theta} \longrightarrow 8S^{2-} + 4S_2O_3^{2-} + H_2O \\
\hline
 & 16 \\
\end{array}$$

$$240\text{H}^{\Theta} + 2\text{S}_{8} \longrightarrow 8\text{S}^{2-} + 4\text{S}_{2}\text{O}_{3}^{2-} + 12\text{H}_{2}\text{O}$$

$$12OH^{\Theta} + S_8 \longrightarrow 4S^{2-} + 2S_2O_3^{2-} + 6H_2O$$

Hence a = 12