JEE Main July 2021 Question Paper With Text Solution 20 July. | Shift-1

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

JEE Main July 2021 | 20 July Shift-1

JEE MAIN JULY 2021 | 20TH JULY SHIFT-1

SECTION – A

1. The correct structure of Rhumann's Purple, the compound formed in the reaction of ninhydrin with proteins is :

Ans. Official Answer NTA (2)

Sol. Ninhydrin is used to detect primary amines, secondary amines and NH₃.

Ninhydrin, on reaction with amines produces a deep blue or purple color complex which is known as Rhumann's purple

- 2. According to the valence bond theory the hybridization of central metal atom is dsp² for which one of the following compounds ?
 - (1) $K_2[Ni(CN)_4]$

MATRIX

- (2) $Na_2[NiCl_4]$
- (3) $NiCl_2.6H_2O$
- (4) $\left[\operatorname{Ni}(\operatorname{CO})_{4}\right]$
- Ans. Official Answer NTA (1)
- Sol. (1) $K_2[Ni(CN)_4]$

 $Ni^{2+} \equiv 3d^8$

 $CN^{\boldsymbol{\Theta}}$ is a strong ligand hence hybridisation is $dsp^2.$

(2) $\operatorname{Na}_2[\operatorname{NiCl}_4]$

 $Ni^{2+} \equiv 3d^8$

 Cl^{Θ} is a weak ligand hence hybridisation is sp^3 .

(3) NiCl₂.6H₂O

[Ni(H₂O)₆]Cl₂

 $Ni^{2+} \equiv 3d^8$

 H_2O is a weak ligand hence hybridisation is sp^3d^2 .

(4) $\left[Ni(CO)_4 \right]$

 $Ni \equiv 3d^8 4s^2$

CO is strong ligand but even after pairing d orbital is not vacant hence hybridisation is sp³.

3. In the given reaction 3-Bromo-2,2-dimethyl butane $\xrightarrow{C_2H_5OH}$ (Major Product) Product A is :

(1) 2-Ethoxy-2,3-dimethyl butane.

(2) 2-Ethoxy-3 3-dimethyl butane.

(3) 2- Hydroxy-3,3- dimethyl butane.

(4) l-Ethoxy-3,3-dimethyl butane.

Ans. Official Answer NTA (1)

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

- 6. Chemical nature of the nitrogen oxide compound obtained from a reaction of concentrated nitric acid and P_4O_{10} (in 4 : 1 ratio) is :
 - (1) amphoteric

MATRIX

- (2) neutral
- (3) basic
- (4) acidic
- Ans. Official Answer NTA (4)
- Sol. $P_4O_{10} + 4HNO_3 \longrightarrow 2N_2O_5 + 4HPO_3$
 - N₂O₅ is Acidic in nature
- 7. The correct order of intensity of colors of the compounds is :

(1)
$$[NiCl_4]^{2-} > [Ni(H_2O)_6]^{2+} > [Ni(CN)_4]^{2-}$$

(2)
$$[NiCl_4]^{2-} > [Ni(CN)_4]^{2-} > [Ni(H_2O)_6]^{2-}$$

- (3) $[Ni(CN)_4]^2 > [NiCl_4]^2 > [Ni(H_2O)_6]^{2+}$
- (4) $[Ni(H_2O)_6]^{2+} > [NiCl_4]^{2-} > [Ni(CN)_4]^{2-}$
- Ans. Official Answer NTA (1)
- Sol. Generally tetrahedral complexes are more intense in color in comparison to octahedral complexes.

	[NiCl ₄] ²⁻		$[Ni(H_2O)_6]^{2+}$		$[Ni(N)_4]^2$
MATRIX	Ι		Π		III
Order of splitting energy	Δ_{t}	<	Δ_0	<	$\Delta_{ m sp}$
Order of absorbed energy	Ι	<	Π	<	III
Order of intensity of color	Ι	<	Π	<	III

8. An inorganic Compound 'X' on treatment with concentrated H_2SO_4 produces brown fumes and gives dark brown ring with $FeSO_4$ in presence of concentrated H_2SO_4 . Also Compound 'X' gives precipitate 'Y, when its solution in dilute HC1 is treated with H_2S gas. The precipitate 'Y on treatment with concentrated HNO₃ followed by excess of NH_4OH further gives deep blue coloured solution, Compound 'X' is:

 $(1) \operatorname{Pb(NO_2)_2}$

MATRIX

(2) $Cu(NO_3)_2$

- (3) $Pb(NO_3)_2$
- (4) $Co(NO_3)_2$
- Ans. Official Answer NTA (2)

Sol. $\begin{array}{ccc} Cu(NO_3)_2 & \xrightarrow{Conc. H_2SO_4} & Cu^{+2} + NO_2 \\ (X) & & Brown fumes \\ NO_3^{\,\Theta} + FeSO_4 + H_2SO_4 & \longrightarrow Fe_2(SO_4)_3 + NO \\ FeSO_4(aq) + NO & \longrightarrow [Fe(H_2O)_5 NO]SO_4 & \rightarrow Dark brown ring \\ Cu^{+2} + H_2S/H^{\oplus} & \longrightarrow CuS \downarrow \end{array}$

Black PPT (Y)

CuS $\xrightarrow{(1) \text{HNO}_3}$ [Cu (NH₃)₄]²⁺ NH₄OH Deep blue colour

9. Orion fibres are made up of :

(1) Polyesters

(2) Cellulose

(3) Polyacrylonitrile

(4) Poly amide

- Ans. Official Answer NTA (3)
- Sol. Orion fibres are made from polymerized acrylonitrile

10.
$$\frac{\text{KMnO}_{4}}{\text{H}_{2}\text{SO}_{4}, \Delta} \quad \text{'A'} \text{(major product)}$$
$$\underbrace{\text{KMnO}_{4}}_{\text{H}_{2}\text{O}, 273 \text{ K}} \quad \text{'B'} \text{(major product)}$$

For above chemical reactions, identify the correct statement from the following.

- (1) Compound 'A' is dicarboxylic acid and compound 'B' is diol.
- (2) Compound 'A' is diol and compound 'B' is dicarboxylic acid.
- (3) Both compound 'A' and compound 'B' are diols,
- (4) Both compound 'A' and compound 'B' are dicarboxylic acids.

Ans. Official Answer NTA (1)

 $KMnO_4/H_2SO_4$, Δ is a oxidising agent.

KMnO₄, H₂O|273 K is Bayer's Reagent.

- 11. The set in which compounds have different nature is :
 - (1) B(OH), and Al(OH),
 - (2) NaOH and $Ca(OH)_2$
 - (3) $Be(OH)_2$ and $Al(OH)_3$

(4)
$$B(OH)_3$$
 and H_3PO_3

Ans. Official Answer NTA (1)

ATRIX

- Sol. $B(OH)_3 \rightarrow Boric acid and it is acidic in nature$
 - $Al(OH)_3 \rightarrow Amphoteric$
 - $NaOH \rightarrow Basic$
 - $Ca(OH)_2 \rightarrow Basic$
 - $Be(OH)_2 \rightarrow Amphoteric$
 - $Al(OH)_3 \rightarrow Amphoteric$
 - $H_3PO_3 \rightarrow Acidic$
- 12. The species given below that does NOT show disproportionation reaction is :
 - (1) BrO_{3}^{-}
 - (2) BrO_{4}^{-}
 - (3) BrO_2^-
 - (4) BrO⁻
- Ans. Official Answer NTA (2)
- Sol. BrO_{4}^{Θ} can not show disproportionation because Br is present in its highest oxidation state in it.
- 13. Identify the incorrect statement from the following :
 - (1) Glycogen is called as animal starch
 - (2) Amylose is a branched chain polymer of glucose
 - (3) β -Glycosidic linkage makes cellulose polymer
 - (4) Starch is a polymer of α -D glucose
- Ans. Official Answer NTA (2)
- Sol. \rightarrow Glycogen is an animal food storage called animal starch.
 - \rightarrow Amylose is a straight chain polymer of α -D-glucose
 - \rightarrow Monomer unit of cellulose is β -D-glucose and linkage is β -Glycosidic linkage.
 - \rightarrow Monomer unit of starch is α -D-glucose
- 14. The metal that can be purified economically by fractional distillation method is :
 - (1) Cu
 - (2) Fe
 - (3) Zn
 - (4) Ni
- Ans. Official Answer NTA (3)
- Sol. Boiling point of Zn is relatively low hence it can be purified by fractional distillation.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

- 15. The conditions given below are in the context of observing Tyndall effect in colloidal solutions :
 - (A) The diameter of the colloidal particles is comparable to the wavelength of light used.
 - (B) The diameter of the colloidal particles is much smaller than the wavelength of light used.
 - (C) The diameter of the colloidal particles is much larger than the wavelength of light used.
 - (D) The refractive indices of the dispersed phase and the dispersion medium are comparable.
 - (E) The dispersed phase has a very different refractive index from the dispersion medium.

Choose the most appropriate conditions from the options given below.

(1) (C) and (D) only

MATRIX

- (2) (A) and (D) only
- (3) (B) and (E) only
- (4) (A) and (E) only
- Ans. Official Answer NTA (4)
- Sol. A colloidal solution will show Tyndall effect when
 - (a) Diameter of the colloidal particles should be comparable to the wavelenth of light used.
 - (b) Difference between refractive index of dispersion medium and dispersed phase should be high.
- 16. Green Chemistry in day-to-day life is in the use of :
 - (1) Tetrachloroethene for laundry
 - (2) Liquified CO, for dry cleaning of clothes
 - (3) Chlorine for bleaching of paper
 - (4) Large amount of water alone for washing clothes
- Ans. Official Answer NTA (2)
- Sol. Nowadays H₂O₂ with a suitable catalyst is used to bleach the paper instead of chlorine

Tetra chlroroethene $(Cl_2C = CCl_2)$ was earlier used as solvent for dry cleaning. The compound contaminates the ground water and is also a suspected carcinogen. The process using this compound is now being replaced by a process, where liquefied carbondioxide, with a suitable detergent is used. Replacement of halogenated solvent by liquid CO₂ will result in less harm to ground water.

These days hydrogen peroxide (H_2O_2) is used for the purpose of bleaching clothes in the process of laundary, which gives better results and makes use of lesser amount of water.

- 17. Given below are two statements. One is labelled as Assertion A and the other is labelled as Reason R
 Assertion A : Sharp glass edge becomes smooth on heating it upto its melting point.
 Reason R : The viscosity of glass decreases on melting. Choose the most appropriate answer from the options given below.
 - (1) A is true but R is false.

MATRIX

- (2) Both A and R are true but R is NOT the correct explanation of A.
- (3) A is false but R is true.
- (4) Both A and R are true and R is the correct explanation of A.
- Ans. Official Answer NTA (2)
- Sol. On heating viscosity of glass decreases but it does not have any relation with smoothing.
- 18. Given below are two statements : One is labelled as Assertion A and the other is labelled as Reason R. Assertion A : The dihedral angles in H₂O₂ in gaseous phase is 90.2° and in solid phase is 111.5°. Reason R : The change in dihedral angle in solid and gaseous phase is due to the difference in the intermolecular forces. Choose the most appropriate answer from the options given below for A and R. (1) A is not correct but R is correct.
 - (2) Both A and R are correct and R is the correct explanation of A.
 - (3) A is correct but R is not correct.
 - (4) Both A and R are correct but R is not the correct explanation of A

Ans. Official Answer NTA (1)

Due to greater intermolecular forces in solid phase, the bond angle found to be less in solid phase than gas phase.

Question Paper With Text Solution (Chemistry)

JEE Main July 2021 | 20 July Shift-1

19. A s-block element (M) reacts with oxygen to form an oxide of the formula MO₂. The oxide is pale yellow in colour and paramagnetic. The element (M) is :

(1) Ca

- (2) Mg
- (3) Na
- (4) K
- Ans. Official Answer NTA (4)

MATRIX

- Sol. Li forms Li_2O on reaction with O_2 which is diamagnetic Na forms Na_2O_2 on reaction with O_2 which is diamagnetic K forms KO_2 on reaction with O_2 which is paramagnetic
- 20. Compound A is converted to B on reaction with CHC1₃ and KOH. The compound B is toxic and can be decomposed by C. A, B and C respectively are :
 - (1) primary amine, nitrile compound, Conc. HC1
 - (2) secondary amine, nitrile compound, Conc. NaOH
 - (3) secondary amine, isonitrile compound, Conc. NaOH
 - (4) primary amine, isonitrile compound, Conc. HC1
- Ans. Official Answer NTA (4)
- Ans. Answer By Matrix (1)
- Sol. $R-NH_2 + CHCl_3 + KOH \rightarrow R-NC$ <u>Conc. HCl</u> $RNH_2 + HCOOH$
 - (A)

(B) toxic

B is isocyanide or isonitrile which is toxic in nature and can be decomposed by Conc-HCl

JEE Main July 2021 | 20 July Shift-1

SECTION - B

1. To synthesise 1.0 mole of 2-methylpropan-2-ol from Ethylethanoate ______equivalents of CH₃MgBr reagent will be required. (Integer value)

Ans. Official Answer NTA (2)

MATRIX

2 equivalents of CH₃MgBr reagent will be required.

2. The inactivation rate of a viral preparation is proportional to the amount of virus. In the first minute after preparation, 10% of the virus is inactivated. The rate constant for viral inactivation is ______

 \times 10⁻³ min⁻¹. (Nearest integer)

[Use : In 10 = 2.303; $\log_{10} 3 = 0.477$;

property of logarithm : $\log x^y - y \log x$]

Ans. Official Answer NTA (106)

Sol. It is a first order process hence

$$Kxt = 2.303 \log \frac{C_0}{C_t}$$

$$Kx1 = 2.303 \log \frac{100}{90}$$

$$K = 2.303 [\log 10 - \log 9]$$

$$K = 2.303 [1 - 0.477 \times 2]$$

$$K = 2.303 \times 0.046$$

$$K = 0.10593 \text{ min}^{-1}$$

- $K = 105.93 \times 10^{-3} \text{ min}^{-1}$
- An average person needs about 10000 kJ energy per day. The amount of glucose (molar mass = 180.0 g mol⁻¹) needed to meet this energy requirement is ______g. (Nearest integer)

(Use : $\Delta_{\rm C}$ H(glucose) = -2700 kJ mol⁻¹)

- Ans. Official Answer NTA (667)
- Sol. Moles of glucose required for 1000 kJ energy = $\frac{1}{2700} \times 1000$

$$=\frac{100}{27}$$

mass of glucose =
$$=\frac{100}{27} \times 180$$

= $\frac{100 \times 20}{3}$ gm
= 666.67 gm

- 4. At 20°C, the vapour pressure of benzene is 70 torr and that of methyl benzene is 20 torr. The mole fraction of benzene in the vapor phase at 20°C above an equimolar mixture of benzene and methyl benzene is $_$ -10^{-2} . (Nearest integer)
- Ans. Official Answer NTA (78)

Sol. $P_T = P_{benzene}^{\circ} X_{benzene} + P_{methylbenzene}^{\circ} X_{methylbenzene}$ = $70 \times \frac{1}{2} + 20 + \frac{1}{2}$ = 45 torr

mole traction of benzene in vapour phase

$$=\frac{70\times\frac{1}{2}}{45}$$

$$= \frac{7}{9}$$
$$= 0.7777$$

$$= 77.77 \times 10^{-2}$$

5. The number of lone pairs of electrons on the central I atom in I_3 is_

Ans. Official Answer NTA (3)

- 6. 250 mL of 0.5 M NaOH was added to 500 mL of 1 M HCL The number of unreacted HCl molecules in the solution after complete reaction is $\times 10^{21}$. (Nearest integer) (N_A = 6.022 × 10²³)
- Ans. Official Answer NTA (226)

Sol.	NaOH +	HCl	\rightarrow	NaCl	+	H_2O		
	250 imes 0.5	500 >	< 1					
	0	375		125				
	moles of HCl unreacted = 0.375 Number of molecules = $0.375 \times 6.022 \times 10^{23}$							
	of HCl unreacted	ted = 2.258×10^{23}						
			= 22	5.8 × 10) ²¹			

7. The Azimuthal quantum number for the valence electrons of Ga⁺ ion is_____

(Atomic number of Ga = 31)

Ans. Official Answer NTA (0)

MATRIX

Sol. $Ga^{\oplus} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^0$

Valence electron is in 4s

hence value of l for s-orbital is 0.

- 8. The number of nitrogen atoms in a semicarbazone molecule of acetone is .
- Ans. Official Answer NTA (3)

Semicarbazone

- 9. The spin-only magnetic moment value for the complex $[Co(CN)_6]^4$ is _____BM. [At. no. of Co = 27]
- Ans. Official Answer NTA (2)
- Sol. $[Co(CN)_6]^{4-}$

 $Co^{2+} = 3d^7$

As CN^o is a strong ligand

This electron will be transferred to higher orbitals

$$\mu = \sqrt{n(n+2)}$$
$$= \sqrt{1(1+2)} = \sqrt{3} = 1.732 \text{ B.M.}$$

10. $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$

In an equilibrium mixture, the partial pressures are

$$P_{SO_3} = 43 \text{ kPa}$$
; $P_{O_2} = 530 \text{ Pa}$ and $P_{SO_2} = 45 \text{ kPa}$. The equilibrium constant $K_p = \underline{\qquad} \times 10^{-2}$.

(Nearest integer)

Ans. Official Answer NTA (172)

Ans. Answer Matrix By (0)

Sol.
$$K_{p} = \frac{(P_{SO_{3}})^{2}}{(P_{SO_{2}})^{2} P_{O_{2}}} = \frac{(43 \times 10^{3})^{2}}{(45 \times 10^{3})^{2} \times 530}$$

= 0.0017228
= 0.172 × 10⁻²