JEE Main July 2021 Question Paper With Text Solution 20 July. | Shift-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

Question Paper With Text Solution (CHEMISTRY)

JEE Main July 2021 | 20 July Shift-2

JEE MAIN JULY 2021 | 20th JULY SHIFT-2

SECTION – A

- 1. Which one of the following gases is reported to retard photosynthesis ?
 - (1) CO₂
 - (2) CO
 - $(3) NO_{2}$

(4) CFCs

- Ans. Official Answer NTA (3)
- Sol. NO_2 damages the leaves of plants and retard the rate of photosynthesis.
- 2. Outermost electronic configuration of a group 13 element E, is 4s², 4p¹. The electronic configuration of an element of p-block period-five placed diagonally to element, E is :

(1) [Ar] 3d¹⁰ 4s² 4p²

- (2) [Kr] 4d¹⁰ 5s² Sp²
- (3) [Xe] 5d¹⁰ 6s² 6p²
- (4) [Kr] $3d^{10} 4s^2 4P^2$
- Ans. Official Answer NTA (2)
- Sol. E is Galium (Ga)

p-block element placed diagonally to E in 5th period is Sn Sn = [Kr] $4d^{10}5s^2 5p^2$

- 3. Which one of the following species doesn't have a magnetic moment of 1.73 BM, (spin only value)?
 - (1) CuI
 - $(2) O_2^{\oplus}$
 - (3) $[Cu(NH_3)_4]Cl_2$
 - $(4) O_2^{\Theta}$
- Ans. Official Answer NTA (1)
- Sol. (1) $Cu^{\oplus} = 3d^{10}$ Magnetic moment = 0 (2) $O_{2}^{\oplus} = \sigma_{1s}^{2} \sigma_{1s}^{*2} \sigma_{2s}^{2} \sigma_{2s}^{*2} \sigma_{2pz}^{2} \pi_{2px}^{2} \pi_{2py}^{2} \pi_{2px}^{*1}$

(2) $O_{2}^{\circ} = \sigma_{1s}^{\circ} \quad \sigma_{1s}^{*} \quad \sigma_{2s}^{\circ} \quad \sigma_{2s}^{*} \quad \sigma_{2pz}^{*} \quad \pi_{2px}^{\circ} \quad \pi_{2py}^{\circ} \quad \pi$ $\mu = \sqrt{1(1+2)} \quad \sqrt{3} \quad \text{B.M.}$

(3) $[Cu(NH_3)_4]Cl_2$ $Cu^{2+} = 3d^9$ $\mu = \sqrt{1(1+2)} \sqrt{3} B.M.$ (4) O_2^{Θ}

ATRIX

$$\mu = \sqrt{1(1+2)} \sqrt{3}$$
 B.M.

- 4. Metallic sodium does not react normally with :
 - (1) tert-butyl alcohol
 - (2) But-2-yne
 - (3) Ethyne
 - (4) gaseous ammonia
- Ans. Official Answer NTA (2)
- Sol. Metallic sodium reacts with compounds containing active hydrogen to release H_2 gas. As But-2-yne has no active hydrogen, hence it will not react with metallic sodium.

In the above reactions, product A and product B respectively are :

- 6. A solution is 0.1 M in Cl⁻ and 0.001 M in CrO_{4}^{-} . Solid AgNO₃ is gradually added to it. Assuming that the addition does not change in volume and $K_{sp}(\text{AgCl}) = 1.7 \times 10^{-10} \text{ M}^2$ and $\text{Ksp}(\text{Ag}_2\text{CrO}_4) = 1.9 \times 10^{-12} \text{ M}^3$. Select correct statement from the following :
 - (1) AgCl precipitates first because its K_{sp} is high.
 - (2) Ag₂CrO₄ precipitates first because the amount of Ag⁺ needed is low.
 - (3) AgCl will precipitate first as the amount of Ag⁺ needed to precipitate is low.
 - (4) Ag_2CrO_4 precipitates first as its K_{sp} is low.
- Ans. Official Answer NTA (3)
- Sol. For AgCl
 - $[Ag^{+}] [0.1] > 1.7 \times 10^{-10}$ for precipitation
 - $[Ag^{+}] > 1.7 \times 10^{-9}$
 - For Ag₂CrO₄
 - $[Ag^{+}]^{2}[0.001] > 1.9 \times 10^{-12}$
 - $[Ag^+]^2 > 1.9 \times 10^{-9}$
 - $[Ag^+] = \sqrt{19} \times 10^{-5}$

So AgCl will precipitate first as the amount of Ag^{\oplus} needed to precipitate is low.

Ans. Official Answer NTA (2)

- 8. Which one of the following statements is not true about enzymes ?
 - (1) Enzymes work as catalysts by lowering the activation energy of a biochemical reaction.
 - (2) Enzymes are non-specific for a reaction and substrate.
 - (3) The action of enzymes is temperature and pH specific.
 - (4) Almost all enzymes are proteins.
- Ans. Official Answer NTA (2)
- Sol. Enzymes are specific for a reaction and substrate

- 9. The hybridisations of the atomic orbitals of nitrogen in NO_2^- , NO_2^+ and NH_4^+ respectively are :
 - (1) sp², sp and sp³

MATRIX

- (2) sp, sp^2 and sp^3
- (3) sp³, sp and sp²
- (4) sp^3 , sp^2 and sp
- Ans. Official Answer NTA (1)

10. Consider two chemical reactions (A) and (B) that take place during metallurgical process :

(A)
$$ZnCO_{3(s)} \xrightarrow{\Delta} ZnO_{(s)} + CO_{2(g)}$$

(B)
$$2ZnS_{(s)} + 3O_{2(g)} \xrightarrow{\Delta} 2ZnO_{(s)} + 2SO_{2(g)}$$

The correct option of names given to them respectively is:

(1) (A) is roasting and (B) is calcination

- (2) (A) is calcination and (B) is roasting
- (3) Both (A) and (B) are producing same product so both are roasting
- (4) Both (A) and (B) are producing same product so both are calcination
- Ans. Official Answer NTA (2)

Sol. (A)
$$ZnCO_3(s) \xrightarrow{\Lambda} ZnO(s) + CO_2(g)$$

It represents calcination which is heating of ore in absence of air

(B)
$$2ZnS(s) + 3O2(g) \xrightarrow{\Delta} 2ZnO(s) + 2SO2(g)$$

It represents roasting which is heating of ore in presence of air.

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Wabaita : and Canada and

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

- 11. Bakelite is a cross-linked polymer of formaldehyde and :
 - (1) Novolac

MATRIX

- (2) Dacron
- (3) Buna-S
- (4) PHBV
- Ans. Official Answer NTA (1)
- Sol. A linear product of phenol formaldehyde polymer is called Novolac. Novalac on heating with formaldehyde undergoes cross linking to form bakelite.

Consider the above reaction, compound B is :

Ans. Official Answer NTA (1)

- 13. In Carius method, halogen containing organic compound is heated with fuming nitric acid in the presence of :
 - (1) AgNO₃
 - (2) $BaSO_4$
 - (3) CuSO₄
 - (4) HNO_3
- Ans. Official Answer NTA (1)
- Sol. In carius method, halogen containing organic compound is heated with fuming nitric acid in presence of AgNO₃
- 14. Benzene on nitration gives nitrobenzene in presence of HNO_3 and H_2SO_4 mixture, where :
 - (1) HNO_3 acts as a base and H_2SO_4 acts as an acid
 - (2) both H_2SO_4 and HNO_3 act as an acids
 - (3) HNO_3 acts as an acid and H_2SO_4 acts as a base
 - (4) both H_2SO_4 and HNO_3 act as a bases
- Ans. Official Answer NTA (1)

Hence H₂SO₄ act as acid and HNO₃ act as base

15. Which one of the following pairs of isomers is an example of metamerism ?

Ans. Official Answer NTA (2)

The correct order of their reactivity towards hydrolysis at room temperature is :

- (1) (A) > (B) > (C) > (D)(2) (D) > (A) > (B) > (C)(3) (A) > (C) > (B) > (D)(4) (D) > (B) > (A) > (C)
- Ans. Official Answer NTA (1)

Sol. Hydrolysis of acid derivatives will take place via S_{N2} or acyl substitution reaction.

Rate ∞ leaving group ability of leaving group

Order of leaving group ability $\rightarrow Cl^{-} > \overset{\Theta}{O} - \overset{\Pi}{C} - R > \overset{\Theta}{O} - R > \overset{\Theta}{NH}_{2}$

- 17. Spin only magnetic moment of an octahedral complex of Fe^{2+} in the presence of a strong field ligand in
 - BM is :
 - (1) 0
 - (2) 2.82
 - (3) 3.46
 - (4) 4.89
- Ans. Official Answer NTA (1)

MATRIX

Sol. $Fe^{2+} \equiv 3d^6$

in preseuce of strong field ligand

$$\mu = \sqrt{n(n+2)} = 0$$

- 18. Cu^{2+} salt reacts with potassium iodide to give :
 - (1) $Cu(I_3)_2$
 - (2) Cu_2I_3
 - (3) CuI
 - (4) Cu₂I₂
- Ans. Official Answer NTA (4)
- Ans. Answer by Matrix (3, 4)
- Sol. $Cu^{2+} + I^{\Theta} \longrightarrow Cu^{\oplus} + I_2$

 $2 \operatorname{CuSO}_4 + 4\operatorname{KI} \longrightarrow \operatorname{Cu}_2\operatorname{I}_2 + 2\operatorname{K}_2\operatorname{SO}_4 + \operatorname{I}_2$

- 19. The single largest industrial application of dihydrogen is :
 - (1) In the synthesis of nitric acid
 - (2) Manufacture of metal hydrides
 - (3) In the synthesis of ammonia
 - (4) Rocket fuel in space research
- Ans. Official Answer NTA (3)
- Sol. Dihydrogen is used in synthesis of NH₃ via Haber process.

 $N_{2}(g) + 3H_{2}(g) \longrightarrow 2NH_{3}(g)$

Ans. Official Answer NTA (1)

SECTION - B

1. 4 g equimolar mixture of NaOH and Na_2CO_3 contains x g of NaOH and y g of Na_2CO_3 . The value of x

is_____ g. (Nearest integer)

Sol. Let mass of NaOH = x gm

mass of $Na_2CO_3 = 4 - x$

$$\frac{x}{40} = \frac{4-x}{106}$$
$$\Rightarrow 106x = 160 - 40x$$
$$\Rightarrow 146x = 160$$
$$x = \frac{160}{146} \text{ gm}$$
$$= 1.095 \text{ gm}$$

When 0.15 g of an organic compound was analyzed using Carius method for estimation of bromine,
0.2397 g of AgBr was obtained. The percentage of bromine in the organic compound is ______.

(Nearest integer)

[Atomic mass: Silver = 108; Bromine = 80]

Ans. Official Answer NTA (68)

Sol. Mass of Br = $\frac{0.2397}{188} \times 80$ gm

% of Br = $\frac{\frac{0.2397}{188} \times 80}{0.15} \times 100 = 68$

- 3. An aqueous solution of NiCl₂ was heated with excess sodium cyanide in presence of strong oxidizing agent to form $[Ni(CN)_6]^{2-}$. The total change in number of unpaired electrons on metal centre is .
- Ans. Official Answer NTA (2)

$$Ni^{2+} = 3d^8 = 2$$
number of unpaired $e^- = 2$

 $[Ni(CN)_{6}]^{2-}$

$$Ni^{4+} = 3d^6$$

 CN^{Θ} is a strong ligand hence

number of unpaired $e^- = 0$

Change in number of unpaired $e^- = 2 - 0 = 2$

100 ml of 0.0018% (w/v) solution of Cl⁻ ion was the minimum concentration of Cl⁻ required to precipitate a negative sol in one hour. The coagulating value of Cl⁻ ion is _____.

(Nearest integer)

Ans. Official Answer NTA (1)

Ans. Answer by Matrix (Bonus)

Sol. Coagulating value \Rightarrow It is the minimum concentration of electrolyte in milimoles required to cause coagulation of 1 litre solution.

5. $PCl_5(g) \rightarrow PCl_3(g) + Cl_2(g)$

MATRIX

In the above first order reaction the concentration of PCl_5 reduces from initial concentration 50 mol L^{-1} to 10 mol L^{-1} in 120 minutes at 300 K. The rate constant for the reaction at 300 K is $x \times 10^{-2}$ min⁻¹. The value of x is ______.

Ans. Official Answer NTA (1)

Sol.
$$K \times t = 2.303 \log \frac{C_o}{C_t}$$

 $K = \frac{2.303}{120} \log \frac{50}{10}$
 $K = \frac{2.303}{120} \times 0.6989 = 0.01341$
 $= 1.34 \times 10^{-2} \min^{-1}$

- 6. The vapour pressures of A and B at 25°C are 90 mm Hg and 15 mm Hg respectively. If A and B are mixed such that the mole fraction of A in the mixture is 0.6, then the mole fraction of B in the vapour phase is $x \times 10^{-1}$. The value of x is_. (Nearest integer)
- Ans. Official Answer NTA (1)
- Sol. $P_{T} = P_{A}^{\circ}X_{A} + P_{B}^{\circ}X_{B}$ $= 90 \times 0.6 + 15 \times 0.4$ = 60

Mole fraction of B in vapour phase = $\frac{15 \times 0.4}{60} = 0.1 = 1 \times 10^{-1}$

7. Potassium chlorate is prepared by electrolysis of KC1 in basic solution as shown by following equation.

 $6 \text{ OH}^- + \text{C1}^- \rightarrow \text{ClO}^-_3 + 3 \text{ H}_2\text{O} + 6 \text{ e}^-$

A current of xA has to be passed for 10 h to produce 10.0 g of potassium chlorate. The value of x

is_____. (Nearest integer)

(Molar mass of KC $lO_3 = 122.6 \text{ g mol}^{-1}$, F = 96500 C)

Ans. Official Answer NTA (1)

- Sol. $6O\overset{\ominus}{H} + CI^{-} \longrightarrow Cl\overset{\ominus}{O}_{3} + 3H_{2}O + 6e^{-}$ Moles of $KClO_{3} = \frac{10}{122.6}$ Moles of $e^{-} = \frac{10}{122.6} \times 6$ Charge $= \frac{10}{122.6} \times 6 \times 96500$ $\frac{10}{122.6} \times 6 \times 96500 = x \times 10 \times 3600$ x = 1.311 A
- 8. For a given chemical reaction A \rightarrow B at 300 K the free energy change is -49.4 kJ mol⁻¹ and the enthalpy of reaction is 51.4 kj mol⁻¹. The entropy change of the reaction is _____J K⁻¹ mol⁻¹.
- Ans. Official Answer NTA (336)

Sol.
$$\Delta G = \Delta H - T\Delta S$$

 $-49.4 \times 10^3 = 51.4 \times 10^3 - 300 \Delta S$
 $300 \Delta S = 51.4 \times 10^3 + 49.4 \times 10^3$
 $\Delta S = \frac{(51.4 + 49.4)}{300} \times 10^3$
 $= 336 \text{ JK}^{-1} \text{ mol}^{-1}$

- 9. Diamond has a three dimensional structure of C atoms formed by covalent bonds. The structure of diamond has face centred cubic lattice where 50% of the tetrahedral voids are also occupied by carbon atoms. The number of carbon atoms present per unit cell of diamond is _____.
- Ans. Official Answer NTA (8)
- Sol. Number of carbon atoms present at lattice points of fcc = $8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$

Number of carbon atoms present in tetrahedral voids = $8 \times \frac{1}{2} = 4$

Total number of carbon atoms present per unit cell of diamond = 4 + 4 = 8

MATRIX

10. The wavelength of electrons accelerated from rest through a potential difference of 40 kV is $x \times 10^{-12}$ m.

The value of x is _____. (Nearest integer)

Given : Mass of electron = 9.1×10^{-31} kg

Charge on an electron = 1.6×10^{-19} C

Planck's constant = 6.63×10^{-34} Js

Ans. Official Answer NTA (6)

TRI

Sol.
$$\lambda = \frac{h}{\sqrt{2mqv}}$$

$$\lambda = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-19} \times 40 \times 10^3}}$$

= 0.614 × 10⁻¹¹
= 6.14 × 10⁻¹² m