JEE Main March 2021 Question Paper With Text Solution 16 March. | Shift-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation| VI-X Pre-Foundation

JEE MAIN MARCH 2021 | 16th MARCH SHIFT-2 SECTION - A

- 1. The secondary structure of protein is stabilised by :
 - (1) Glycosidic bond
 - (2) Peptide bond
 - (3) Hydrogen bonding
 - (4) Van der Waals forces
- Ans. Official Answer NTA (3)
- Sol. Hydrogen bond stabilises backbone of polypeptide chain by attraction between
 - $\begin{array}{c} O\\ II\\ -C- and -NH- \end{array}$
- 2. The exact volumes of 1 M NaOH solution required to neutralise 50 mL of 1 M H_3PO_3 solution and 100

mL of 2 M H₃PO₂ solution, respectively, are :

- (1) 100 mL and 100 mL
- (2) 100 mL and 200 mL
- (3) 50 mL and 50 mL
- (4) 100 mL and 50 mL
- Ans. Official Answer NTA (2)
- Sol. $H_3PO_3 + NaOH \rightarrow$

equivalent of H_3PO_3 = equivalent of NaOH $50 \times 1 \times 2$ = $1 \times V \times 1$ V = 100 mL $H_3PO_2 + \text{NaOH} \rightarrow$ equivalent of H_3PO_2 = equivalent of NaOH $100 \times 2 \times 1$ = $1 \times V \times 1$ V = 200 mL

- 3. Fex₂ and Fey₃ are known when x and y are :
 - (1) $\mathbf{x} = \mathbf{F}, \mathbf{F}l, \mathbf{B}r, \mathbf{and} \mathbf{y} = \mathbf{F}, \mathbf{C}l, \mathbf{B}r, \mathbf{I}$
 - (2) x = Cl, Br, I and y = F, Cl, Br, I
 - (3) x = F, Cl, Br and y = F, Cl, Br, I

(4) x = F, Cl, Br, I and y = F, Cl, Br

- Ans. Official Answer NTA (4)
- Sol. x = F, Cl, Br, I

y = F, Cl, Br

FeI, does not exist because Fe⁺³ is a strong oxidizing agent and I⁻ is a strong reducing agent.

 $FeI_3 \longrightarrow FeI_2 + \frac{1}{2}I_2$

Not exist.

- 4. The characteristics of elements X, Y and Z with atomic numbers, respectively, 33, 53, and 83 are :
 - (1) X and Y are metalloids and Z is a metal.
 - (2) X, Y and Z are metals
 - (3) X and Z are non-metals and Y is a metalloid.
 - (4) X is a metalloid, Y is a non-metal and Z is a metal.
- Ans. Official Answer NTA (4)
- Sol. $X \Rightarrow_{33}As \Rightarrow$ Metalloid
 - $Y \Rightarrow {}_{53}I \Rightarrow Non metal$
 - $Z \Rightarrow_{83}Bi \Rightarrow Metals$

In the above reaction, the reagent "A" is :

- (1) Alkaline KMnO₄, H⁺
- (2) HCl, Zn Hg
- (3) LiA/H₄
- (4) NaBH₄, H_3O^+
- Ans. Official Answer NTA (1)
- Sol. Alkaline $KMnO_4$ is used as oxidising agent that convert alkyl group into carboxylic acid.

Identify the reagent(s) 'A' and condition (s) for the reaction.

- (1) $A = Cl_2$; UV light
- (2) $A = Cl_2$; dark, Anhydrous $AlCl_3$
- (3) $A = HCl, ZnCl_2$
- (4) A = HCl; Anhydrous $AlCl_3$
- Ans. Official Answer NTA (1)
- Sol. Cl₂ in presence of UV light supports free radical formation and allylic position has stable free radical.
- 7. Statement I : Sodium hydride can be used as an oxidising agent.

Statement II : The lone pair of electrons on nitrogen in pyridine makes it basic.

Choose the **CORRECT** answer from the options given below :

- (1) Both statement I and statement II are false
- (2) Statement I is true but statement II is false
- (3) Both statement I and statement II are true
- (4) Statement I is false but statement II is true
- Ans. Official Answer NTA (4)
- Sol. Sodium hydride acts as reducing agent and pyridine is basic.I. NaH can not be used as an oxidising agent.

Lone pair on nitrogen is localised or present in sp² hybridized orbital.

Question Paper With Text Solution (Chemistry) JEE Main March 2021 | 16 March Shift-2

8. Arrange the following metal complex/compounds in the increasing order of spin only magnetic moment. Presume all the three, high spin system.

(Atomic numbers Ce = 58, Gd = 64 and Eu = 63.)

(a)
$$(NH_4)_2[Ce(NO_3)_6]$$
 (b) $Gd(NO_3)_3$ and (c) $Eu(NO_3)_3$
Answer is :

(1) (c) < (a) < (b)

MATRIX

- (2) (b) < (a) < (c)
- (3) (a) < (b) < (c)
- (4)(a) < (c) < (b)
- Ans. Official Answer NTA (4)
- Sol. (a) $[Ce^{+4}(NO_3)_6]^{2-1}$

```
{}_{58}Ce^{+4} \Rightarrow [Xe]^{54} 4f^{\circ} 5d^{\circ} 6s^{2}

n = 0

(b) [Gd^{+3}(NO_{3})_{3}]

{}_{64}Gd = [Xe] 4f^{7} 5d^{\circ} 6s^{\circ}

n = 7

(c) [Eu^{+3}(NO_{3})_{3}]

{}_{63}Eu^{+3} \Rightarrow 4f^{6} sd^{\circ} 6s^{\circ}

n = 6
```

- 9. The **INCORRECT** statement regarding the structure of C_{60} is :
 - (1) The six-membered rings are fused to both six and five-membered rings.
 - (2) It contains 12 six-membered rings and 24 five-membered rings.
 - (3) Each carbon atom forms three sigma bonds.
 - (4) The five-membered rings are fused only to six-membered rings.
- Ans. Official Answer NTA (2)
- Sol. C_{60} has 20 six membered rings and 12 five-membered ring.

10. An unsaturated hydrocarbon X on ozonolysis gives A. Compound A When warmed with ammonical silver nitrarte forms a bright silver mirror along the sides of the test tube. The unsaturated hydrocarbon

(1)
$$CH_3 - C = \checkmark$$

(2) $CH_3 - C = C - CH_3$
(3) $CH_3 - C = C - CH_3$
(4) $HC = C - CH_2 - CH_3$
(4) $HC = C - CH_2 - CH_3$
Ans. Official Answer NTA (4)
Sol. (1) $CH_3 - C = \checkmark \bigcirc \odot \hookrightarrow CH_3 - C - CH_3 + \checkmark \bigcirc \odot$
(Both don't give positive Tollen's test)
(2) $CH_3 - C = C - CH_3 \longrightarrow CH_3 - C - OH \odot$
(Acetic acid doesn't give Tollen's test)
(3) $CH_3 - C = C - CH_3 \longrightarrow CH_3 - C - CH_3 \cup \odot$
(4) $CH_3 - C = C - CH_3 \longrightarrow CH_3 - C - CH_3 \cup \odot$
(both don't give Tollen's test)
(4) $CH_3 - CH_2 - C = CH \longrightarrow O_3 \longrightarrow CH_3 - C - CH_3 \cup \odot$
(4) $CH_3 - CH_2 - C = CH \longrightarrow O_3 \longrightarrow CH_3 - CH_2 - C - OH + H - C - OH \cup O$
(Formic acid only gives positive Tollen's test.)

The structure of X is :

MATRIX

X is :

Ans. Official Answer NTA (2)

- 12. The **INCORRECT** statements below regarding colloidal solutions is :
 - (1) An ordinary filter paper can stop the flow of colloidal particles.
 - (2) The flocculating power of AI^{3+} is more than that of Na⁺.
 - (3) A colloidal solution shows colligative properties.
 - (4) A colloidal solution shows Brownian motion of colloidal particles.
- Ans. Official Answer NTA (1)
- Sol. An ordinary filter paper can not stop the flow of colloidal particles.
- 13. Which of the following polymer is used in the manufacture of wood laminates ?
 - (1) Melamine formaldehyde resin
 - (2) Phenol and formaldehyde resin
 - (3) cis-poly isoprene
 - (4) Urea formaldehyde resin

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

- Ans. Official Answer NTA (4)
- Sol. Urea formaldehyde is used for laminated sheets.
- 14. Which of the following is least basic ?
 - (1) (CH₃CO) **N**HC₂H₅
 - (2) (CH₃CO)₂ NH
 - $(3) (C_2H_5)_3 \ddot{N}$
 - (4) $(C_2H_5)_2$ $\ddot{N}H$
- Ans. Official Answer NTA (2)

lone pair of N is involved in resonance with two carbonyl groups. So, It is least basic.

15. Identify the elements X and Y using the ionisation energy values given below :

	Ionization energy	(kJ/mol)
	1 st	2 nd
Х	495	4563
Y	731	1450
(1) $X = Mg$; $Y = F$		
(2) $X = F$; $Y = Mg$		
(3) $X = Na$; $Y = Mg$		
(4) $X = Mg$; $Y = Na$		

- Ans. Official Answer NTA (3)
- Sol. The diffrence between Ist and IInd ionization energy is very high. So X is alkali metal.
- 16. The green house gas/es is (are) :
 - (A) Carbon dioxide
 - (B) Oxygen
 - (C) Water vapour
 - (D) Methane

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

MATRIX

JEE Main March 2021 | 16 March Shift-2

Choose the most appropriate answer from the options given below :

- (1)(A) and (C) only
- (2) (A) and (B) only
- (3) (A) only
- (4) (A), (C) and (D) only
- Ans. Official Answer NTA (4)
- Sol. Green house gases are water vapour (H_2O), CO_2 , CH_4
- 17. Ammonolysis of Alkyl halides followed by the treatment with NaOH solution can be used to prepare primary, secondary and tertiary amines. The purpose of NaOH in the reaction is :
 - (1) To activate NH₃ used in the reaction
 - (2) to increase the reactivity of alkyl halide
 - (3) To remove acidic impurities
 - (4) To remove basic impurities
- Ans. Official Answer NTA (3)
- Sol. NaOH absorbs acidic impurities so that they don't react with ammonia
- 18. Which of the following reduction reaction CANNOT be carried out with coke ?
 - $(1) \operatorname{Al}_2 \operatorname{O}_2 \to \operatorname{Al}$
 - (2) $ZnO \rightarrow Zn$
 - $(3) \operatorname{Fe}_2 \operatorname{O}_3 \to \operatorname{Fe}$
 - $(4) \operatorname{Cu}_2 \operatorname{O} \to \operatorname{Cu}$
- Ans. Official Answer NTA (1)
- Sol. Al is extracted by electrolytic reduction of Al_2O_3
- 19. The correct statements about H_2O_2 are :
 - (A) Used in the treatment of effluents.
 - (B) Used as both oxidising and reducting agents.
 - (C) The two hydroxyl groups lie in the same plane
 - (D) Miscible with water.

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

MATRIX

Choose the correct answer from the options given below "

- (1)(C) and (D) only
- (2) (A), (B) and (D) only
- (3) (A), (C) and (D) only
- (4) (A), (B), (C) and (D)
- Ans. Official Answer NTA (2)

Sol. Properties of H_2O_2

- (A) H_2O_2 used in the treatment of effluents.
- (B) H_2O_2 can act as both oxidizing and reducing agent.
- (C) H₂O₂ has open book like structure i.e. non planar molecule.

(D) Miscible with water due to hydrogen bonding.

20. Match List-I with List-II :

List-I

List-II

Test/Reagents/Observation(s)	Species detected		
(a) Lassaigne's Test	(i) Carbon		
(b) Cu(II) oxide	(ii) Sulphur		
(c) Silver nitrate	(iii) N, S, P, and halogen		
(d) The sodium fusion extract gives			
black precipitate with acetic acid and			
lead acetate	(iv) Halogen Specifically		
The correct match is :			
(1) (a) - (i), (b) - (iv), (c) - (iii), (d) - (ii)			
(2) (a) - (i), (b) - (ii), (c) - (iv), (d) - (iii)			
(3)(a) - (iii), (b) - (i), (c) - (iv), (d) - (ii)			
(4) (a) - (iii), (b) - (i), (c) - (ii), (d) - (iv)			

Ans. Official Answer NTA (3)

Question Paper With Text Solution (Chemistry)

JEE Main March 2021 | 16 March Shift-2

- Sol. (a) Lassaigne's test is used to detect N,S,P and halogens.
 - (b) Cu (II) oxide reagent used for the detection of carbon.
 - (c) AgNO₃ is specifically used for the detection of halogens.

$$\begin{array}{cccc} \text{NaX} + \text{AgNO}_{3} & \xrightarrow{\text{HNO}_{3}} & \text{AgX} \downarrow \\ (\text{ppt}) \\ \text{(d)} \text{Na}_{2}\text{S} + (\text{CH}_{3}\text{COO})_{2}\text{Pb} & \xrightarrow{\text{HNO}_{3}} & \text{PbS} \downarrow & + 2 \text{ CH}_{3}\text{COONa} \\ & & (\text{black ppt}) \end{array}$$

SECTION – B

1. When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solu-

tion,..... \times 10⁻⁵ moles of lead sulphate precipitate out. (Round off to the Nearest Interger).

Ans. Official Answer NTA (525)

MATRIX

- Sol. $3Pb(NO_3)_2 + Cr_2(SO_4)_3 \rightarrow 3PbSO_4 + 2 Cr(NO_3)_3$ $35 \times 0.15 \qquad 20 \times 0.12$ $5.25 \text{ milimole} \qquad 2.4 \text{ milimole}$ $Pb(NO_3)_2 \text{ is limiting reagent and moles of PbSO_4 formed is <math>5.25 \times 10^{-3}$
- 2. The number of orbitals with n = 5, $m_l = +2$ is(Round off to the Nearest Integer).
- Ans. Official Answer NTA (3)
- Sol. Fro n = 5, Possible subshells are

5s, 5p, 5d, 5f, 5g
5s
$$\Rightarrow$$
 m_l =
0
5p \Rightarrow m_l =
+1 0 -1
5d \Rightarrow m_l =
+2 +1 0 -1 -2
5f \Rightarrow m_l =
+3 +2 +1 0 -1 -2 -3
5g \Rightarrow m_l =
+4 +3 +2 +1 0 -1 -2 -3
5d, 5f and 5g, each has one orbital with m_l = +2

Question Paper With Text Solution (Chemistry) JEE Main March 2021 | 16 March Shift-2

At 25°C, 50 g of iron reacts with HCl to form FeCl₂. The evolved hydrogen gas expands against a constant pressure of 1 bar. The work done by the gas during this expansion isJ.

(Round off to the Nearest Integer).

[Given : $R = 8.314 \text{ mol}^{-1}\text{K}^{-1}$. Assume, hydrogen is an ideal gas]

[Atomic mass of Fe is 55.85 u]

Ans. Official Answer NTA (2218)

MATRIX

Sol. Fe + 2HC $l \rightarrow \text{FeC}l_2 + \text{H}_2$

$$\frac{50}{55.85} \text{ mole} \qquad \frac{50}{55.85} \text{ mole} W = -\Delta n_g RT = -\frac{50}{55.85} \times 8.314 \times 298 = -2218.05 J$$

Sol.
$$\Delta_0 = \frac{hc}{\lambda} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{498 \times 10^{-9}}$$
$$= 3.99 \times 10^{-19} \text{ J}$$
$$= 4 \times 10^{-19} \text{ J}$$

- At 363 K, the vapour pressure of A is 21 kPa and that of B is 18 kPa. One mole of A and 2 moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is kPa. (Round off to the Nearest Integer).
- Ans. Official Answer NTA (19)

Sol.
$$P_{T} = P_{A}^{0} X_{A} + P_{B}^{0} X_{B}$$

= $21 \times \frac{1}{3} + 18 \times \frac{2}{3}$
= 19

- 6. Sulphurous acid (H₂SO₃) has Ka₁ = 1.7×10^{-2} and Ka₂ = 6.4×10^{-8} . The pH of 0.588 M H₂SO₃ is (Round off to the Nearest Integer).
- Ans. Official Answer NTA (1)

MATRIX

Sol. p^{H} of H_2SO_3 can be calculated by considering only first dissociation of H_2SO_3

$$p^{H} = \frac{1}{2} (p^{Ka_{1}} - \log c)$$

$$= \frac{1}{2} [2 - \log 1.7 - \log 0.588]$$

$$= \frac{1}{2} [2 - \log (1.7 \times 0.588)]$$

$$= \frac{1}{2} [2 - \log (0.996)]$$

$$\approx 1$$

7. In Duma's method of estimation of nitrogen, 0.1840 g of an organic compound gave 30 mL of nitrogen collected at 287 K and 758 mm of Hg pressure. The percentage composition of nitrogen in the compound is (Round off to the Nearest Integer).

[Given : Aqueous tension at 287 K = 14 mm of Hg]

Ans. Official Answer NTA (19)

Sol. Pressure of gas = 758 - 14 = 744 mm Hg $\frac{744}{760} \times \frac{30}{1000} = n_{N_2} \times 0.0821 \times 287$ $n_{N_2} = 12.464 \times 10^{-4}$ $w_{N_2} = 12.464 \times 10^{-4} \times 28 = 0.03489$

$$%N_2 = \frac{0.03489}{0.184} \times 100$$

= 18.96

8. Ga (Atomic mass 70 u) crystallizes in a hexagonal close packed structure. The total number of voids in

0.581 g of Ga is \times 10 21 . (Round off to the Nearest Integer).

[Given : $N_A = 6.023 \times 10^{23}$]

Ans. Official Answer NTA (15)

- Sol. In HCP structure $\rightarrow 12 \text{ T.V.} + 6 \text{ O.V.}$ in HCP structure $\rightarrow 6 \text{ atoms}$ total number of Ga atoms $= \frac{.581}{70} \times 6.23 \times 10^{23}$ $= 4.99 \times 10^{21} \text{ atoms}$ in 6 atoms of HCP = total 18 voids $4.99 \times 10^{21} \text{ atom of Ga} = \frac{18}{6} \times 4.99 \times 10^{21}$ $= 15 \times 10^{21} \text{ voids}$
- 9. A and B decompose via first order kinetic with half-lives 54.0 min and 18.0 min respectively. Starting from an equimolar non reactive mixture of A and B, the time taken for the concentration of A to become 16 times that of B is min. (Round off to the Nearst Integer).

Ans. Official Answer NTA (108)

Sol. For A

For B

$$\frac{ln2}{18} \times t = ln\left(\frac{B_0}{B_t}\right) \dots (2)$$

$$\therefore A_t = 16B_t, A_0 = B_0$$

From (1)
$$\Rightarrow \frac{ln2}{54} \times t = ln\left(\frac{B_0}{16B_t}\right)$$

Using equation (2) $\Rightarrow \frac{ln2}{54} \times t = \frac{ln2}{18} \times t - ln(16)$

$$\frac{2ln\,2}{54} \times t = ln(16)$$
$$t = 108$$

A 5.0 m mol dm⁻³ aqueous solution of KC*l* has a conductance of 0.55 mS when measured in a cell of cell constant 1.3 cm⁻¹. The molar conductivity of this solution is
 mSm²mol⁻¹. (Round off to the Nearest Integer).

Ans. Official Answer NTA (143)

Ans. Official Answer By Matrix (14)

Sol. $\lambda = \frac{K \times 1000}{M}$ $K = G \times G^{*}$ $= 0.55 \times 10^{-3} \times 1.3$ $K = 0.715 \times 10^{-3} \text{ Scm}^{-1}$ $M = 5 \times 10^{-3} \text{ mol}/litre$ $\lambda = \frac{0.715 \times 10^{-3} \times 1000}{5 \times 10^{-3}}$ $\lambda = 143 \quad \text{Scm}^{2} \text{ mol}^{-1}$ $= 143 \times 10^{-4} \text{ Sm}^{2} \text{ mol}^{-1}$ $= 14.3 \times 10^{-3} \text{ Sm}^{2} \text{ mol}^{-1}$ $= 14.3 \text{ msm}^{2} \text{ mol}^{-1}$