CHEMISTRY 09 APRIL 2019 [Phase : II] JEE MAIN PAPER ONLINE

1. The major product of the following reaction is : निम्न अभिक्रिया का मुख्य उत्पाद है –

CH₂OH
$$CH_2OH \longrightarrow CHCl_3$$
CHCl₃

A. 2

sol. OH OH $H_2SO_4(cat.)$ CHCl₃

Acid catalysed intramolecular esterification

$$OH \longrightarrow OH \longrightarrow OH \longrightarrow OH$$

$$OH \longrightarrow OH$$

- 2. The peptide that gives positive ceric ammonium nitrate and carbylamine tests is वह पेप्टाइड जो सकारात्मक सेरिक अमोनियम नाइट्रेट तथा कार्बिलऐमीन परीक्षण देता है, वह है:
 - (1) Ser Lys
- (2) Lys Asp
- (3) Gln Asp
- (4) Asp Gln

- A. 1
- sol. Ceric ammonium nitrate test is given by alcohol. Only serine(ser) contain –OH group.
- 3. Which of the following compounds is a constituent of the polymer $\left\{ HN C NH CH_2 \right\}_{n}$?
 - (1) Formaldehyde
- (2) Ammonia
- (3) Methylamine
- (4) N-Methyl urea

- (1) फार्मेल्डीहाइड
- (2) अमोनिया
- (3) मेथिल ऐमीन
- (4) N-मेथिल यूरिया

A. 1

MATRIX

sol.
$$\begin{array}{c} O \\ \parallel \\ NH-C-NH-CH_{2} \end{array}$$
 - urea-formaldehyde resin

- :. Monomers: Urea and formaldehyde
- 4. During compression of a spring the work done is $10 \, \text{kJ}$ and $2 \, \text{kJ}$ escaped to the surroundings as heat. The change in internal energy, ΔU (in kJ) is

एक स्प्रिंग को संपीडित करने में किया गया कार्य 10~kJ है तथा 2~kJ ऊष्मा के रूप में वातावरण को चला जाता है। आंतरिक ऊर्जा में परिवर्तन $\Delta U~(kJ$ में) होगा :

- (1) 12
- (2)-12
- (3) 8
- (4) 8

- A. 3
- sol. w = 10 kJ

$$q = -2 \text{ kJ}$$

$$\Delta U = q + w = 10 - 2 = 8 \text{ kJ}$$

- 5. What would be the molality of 20% (mass/mass) aqueous solution of KI (molar mass of KI = 166 g mol^{-1}) KI के 20% (द्रव्यमान/द्रव्यमान) जलीय विलयन की मोललता क्या होगी ? (KI का मोलर द्रव्यमान = 166 g mol^{-1})
 - (1) 1.48
- (2) 1.51
- (3) 1.08
- (4) 1.35

- A. 2
- sol. 20% W/W KI solution

i.e. 100 g solution contains 20 g KI

- $\therefore \qquad \text{Mass of solvent} = 100 20 = 80 \text{ g}$
- $\therefore \qquad \text{Molality} = \frac{20 \times 1000}{166 \times 80}$
 - $\approx 1.51 \text{ molar}$
- 6. A solution of $Ni(NO_3)_2$ is electrolysed between platinum electrodes using 0.1 Faraday electricity. How many mole of Ni will be deposited at the cathode?

0.1 फैराडे विद्युत का प्रयोग करते हुए, प्लेटिनम इलेक्ट्रोडों के बीच, $Ni(NO_3)_2$ के विलयन को विद्युत अपघटित किया गया। कैथोड पर Ni का कितना मोल निक्षेपित होगा?

- (1) 0.20
- (2) 0.15
- (3) 0.10
- (4) 0.05

- A. 4
- sol. $0.1 \,\mathrm{F}$ of electricity is passed through $\mathrm{Ni}(\mathrm{NO_3})_2$ solution
 - \therefore Amount of Ni deposited = 0.1 eq
 - :. Moles = $\frac{0.1}{2}$ = 0.05

MATRIX

Matrix JEE Academy

JEE (MAIN ONLINE) 2019

HF has highest boiling	g point among hydroger	halides, because it has	S
(1) Strongest hydrogen bonding		(2) Lowest dissociation enthalpy	
(3) Strongest van der Waals' interactions		(4) Lowest ionic character	
HF का क्वथनांक हाइड्रो	जन हैलाइडों में उच्चतम होत	ा है, इसका कारण है :	
(1) प्रबलतम हाइड्रोजन आबन्धन		(2) निम्नतम वियोजन एन्थैल्पी	
(3) प्रबलतम वान्डर वाल्स अन्योन्य क्रिया		(4) निम्नतम आयनिक लक्षण	
1			
HF has highest boilin	g point among the hydro	ogen halides due to stro	ong H-bonding between HF molecules
The one that is not a	carbonate ore is		
(1) Bauxite	(2) Calamine	(3) Siderite	(4) Malachite
वह एक जो कार्बोनेट अय	स्क नहीं है, वह है :		
(1) बॉक्साइट	(2) केलामाइन	(3) सिडेराइट	(4) मेलाकाइट
1			
Bauxite \rightarrow AlO _x (OH	$(x)_{3-2x}$		
Calamine \rightarrow ZnCO ₃			
$Siderite \rightarrow FeCO_3$			
$Siderite \rightarrow FeCO_3$			
Malachite \rightarrow CuCO ₃	$_3$. $Cu(OH)_2$		
Noradrenaline is a / a	n		
(1) Neurotransmitter	(2) Antihistamine	(3) Antacid	(4) Antidepressant
नारऐड्रीनेलिन है एक :			
(1) तंत्रकीय संचारक	(2) प्रतिहिस्टामिन	(3) प्रतिअम्ल	(4) प्रति—अवसादक
1			
Noradrenaline is neur	otransmitter.		
Among the following	species, the diamagnetic	emolecule is	
निम्न स्पीशीज़ में, प्रतिचुम्ब	बकीय अणु है :		
(1) CO	(2) NO	$(3) O_2$	$(4)\mathrm{B}_2$
1			
Molecule No.	of unpaired electrons		
NO	1		
CO	Zero		
O_2	2		
B_2	2		
:. Diamagnetic spe	ecies is CO		
	(1) Strongest hydroget (3) Strongest van der HF का क्वथनांक हाइड्रो (1) प्रबलतम हाइड्रोजन व (3) प्रबलतम वान्डर वाल्स् 1 HF has highest boilin The one that is not a c (1) Bauxite वह एक जो कार्बोनेट अय (1) बॉक्साइट 1 Bauxite → AlO _x (OH Calamine → ZnCO ₃ Siderite → FeCO ₃ Siderite → FeCO ₃ Malachite → CuCO ₃ Noradrenaline is a / a (1) Neurotransmitter नारऐड्रीनेलिन है एक: (1) तंत्रकीय संचारक 1 Noradrenaline is neur Among the following निम्न स्पीशीज़ में, प्रतिचुम्ब (1) CO 1 Molecule No. NO CO O ₂ B ₂	(1) Strongest hydrogen bonding (3) Strongest van der Waals' interactions HF का क्वथनांक हाइड्रोजन हैलाइडों में उच्चतम होत् (1) प्रबलतम हाइड्रोजन आबन्धन (3) प्रबलतम वान्डर वाल्स अन्योन्य क्रिया 1 HF has highest boiling point among the hydro The one that is not a carbonate ore is (1) Bauxite (2) Calamine वह एक जो कार्बोनेट अयस्क नहीं है, वह है: (1) बॉक्साइट (2) केलामाइन 1 Bauxite → AlO _x (OH) _{3-2x} Calamine → ZnCO ₃ Siderite → FeCO ₃ Siderite → FeCO ₃ Malachite → CuCO ₃ . Cu(OH) ₂ Noradrenaline is a / an (1) Neurotransmitter (2) Antihistamine नारऐड्रीनेलिन है एक: (1) तंत्रकीय संचारक (2) प्रतिहिस्टामिन 1 Noradrenaline is neurotransmitter. Among the following species, the diamagnetic निम्न स्पीशीज़ में, प्रतिचुम्बकीय अणु है: (1) CO (2) NO 1 Molecule No. of unpaired electrons NO 1 CO Zero O ₂ 2	(3) Strongest van der Waals' interactions (4) Lowest ionic ch HF का क्वथनांक हाइङ्रोजन हैलाइडों में उच्चतम होता है, इसका कारण है : (1) प्रबलतम हाइङ्रोजन आबन्धन (2) निम्नतम वियोजन (3) प्रबलतम वान्डर वाल्स अन्योन्य क्रिया (4) निम्नतम आयिनक 1 HF has highest boiling point among the hydrogen halides due to strotthe one that is not a carbonate ore is (1) Bauxite (2) Calamine (3) Siderite वह एक जो कार्बोनेट अयस्क नहीं है, वह है : (1) बॉक्साइट (2) केलामाइन (3) सिडेराइट 1 Bauxite \rightarrow AlO _x (OH) _{3-2x} Calamine \rightarrow ZnCO ₃ Siderite \rightarrow FeCO ₃ Siderite \rightarrow FeCO ₃ Siderite \rightarrow FeCO ₃ Siderite \rightarrow FeCO ₃ Siderite \rightarrow CuCO ₃ . Cu(OH) ₂ Noradrenaline is a / an (1) Neurotransmitter (2) Antihistamine (3) Antacid नारऐङ्गीनेलिन है एक : (1) तंत्रकीय संचारक (2) प्रतिहिस्टामिन (3) प्रतिअग्ल 1 Noradrenaline is neurotransmitter. Among the following species, the diamagnetic molecule is निम्म स्पीशीज़ में, प्रतिचुम्बकीय अणु है : (1) CO (2) NO (3) O ₂ 1 Molecule No. of unpaired electrons NO 1 CO Zero O ₂ 2 2 B ₂ 2

11. The correct statements among I to III regarding group 13 element oxides are,

- (I) Boron trioxide is acidic.
- (II) Oxides of aluminium and gallium are amphoteric.
- (III) Oxides of indium and thallium are basic.
- (1) (II) and (III) only (2) (I) and (II) only (3) (I), (II) and (III) (4) (I) and (III) only ग्रुप–13 तत्वों के ऑक्साइडों से सम्बन्धित I से III में से सही कथन हैं :
- (I) बोरॉन ट्राइऑक्साइड अम्लीय है।
- (II) एल्यूमीनियम तथा गैलियम के ऑक्साइड उभयधर्मी हैं।
- (III) इनडियम तथा थैलियम के ऑक्साइड क्षारीय हैं।
- (1) केवल (II) तथा (III) (2) केवल (I) तथा (II) (3) (I), (II) तथा (III) (4) केवल (I) तथा (III)
- A. 3
- sol. B_2O_3 is an acidic oxide

Al₂O₃ and Ga₂O₃ are amphoteric oxide

In₂O₃ and Tl₂O are basic oxide

12. The major products A and B for the following reactions are, respectively

निम्नलिखित अभिक्रियाओं के मुख्य उत्पाद A तथा B क्रमशः हैं :

$$I \xrightarrow{\text{KCN}} [A] \xrightarrow{\text{H}_2/\text{Pd}} [B]$$

(1)
$$CN$$
; CH_2NH_2

(2)
$$I \rightarrow I$$
 $I \rightarrow I$

(3)
$$HO$$
 CN HO CH_2-NH_2 H

(4)
$$CN$$
 ; CH_2NH_2

A. 4

sol.
$$\stackrel{O}{\longrightarrow}$$
 $\stackrel{I}{\longleftarrow}$ $\stackrel{CN}{\longrightarrow}$ $\stackrel{CN}{\longrightarrow}$ $\stackrel{CN}{\longrightarrow}$ $\stackrel{CH_2NH_2}{\longrightarrow}$

13. Increasing order of reactivity of the following compounds for $S_N 1$ substitution is $S_N 1$ प्रतिस्थापन के लिए निम्न यौगिकों की अभिक्रियाशीलता का बढ़ता क्रम है :

(A)
$$CH_3$$
 $CH_2 - CI$

(C)
$$H_3CO$$

- A. 3
- sol. $S_N 1$ reaction proceeds via formation of carbocation.

$$\bigoplus_{\text{CH}_2} \bigoplus_{\text{CH}_2} \text{CH}_2$$
 $\downarrow_{\text{OCH}_3} \pmod{\text{D}}$

- On comparing (A) and (B), in (A) there is formation of tertiary carbocation CH_3 —C CH_3 after rearrangement CH_3
- while (B) is primary.

So,
$$(C) > (D) > (A) > (B)$$
.

14. Which of the following potential energy (PE) diagrams represents the $S_N 1$ reaction? स्थितिज ऊर्जा (PE) का निम्न में से कौनसा आरेख $S_N 1$ अभिक्रिया को अभिव्यक्त करता है :

A. 4

sol. In $S_N 1$ reaction, formation of carbocation (1st step) is rate determining step (RDS)

:. Correct graph is given in option-4.

Molal depression constant for a solvent is $4.0 \, \text{K kg mol}^{-1}$. The depression in the freezing point of the solvent for $0.03 \, \text{mol kg}^{-1}$ solution of $K_2 \, \text{SO}_4$ is (Assume complete dissociation of the electrolyte)

एक विलायक के लिए मोलल अवनमन स्थिरांक $4.0~{\rm K~kg~mol^{-1}}$ है । ${\rm K_2SO_4}$ के $0.03~{\rm mol~kg^{-1}}$ विलयन के लिए विलायक के हिमांक में गिरावट होगी, (मान लीजिए विद्युत अपघट्य का वियोजन पूर्ण रूपेण है)

A. 1

sol. $K_2SO_4 \longrightarrow 2K^+ + SO_4^{2-}$

i (Van't Hoff Factor) = 3

16. Consider the given plot of enthalpy of the following reaction between A and B.

 $A + B \rightarrow C + D$

Identify the incorrect statement

(1) Activation enthalpy to form C is 5 kJ mol⁻¹ less than that to form D

- (2) D is kinetically stable product
- (3) Formation of A and B from C has highest enthalpy of activation
- (4) C is the thermodynamically stable product

निम्नलिखित A एवं B के बीच अभिक्रिया की एन्थेल्पी के दिये गये प्लाट पर विचार कीजिए।

$$A + B \rightarrow C + D$$

तथा गलत कथन को बताइये।

- (1) C को बनाने में संक्रियण एन्थेल्पी, D को बनाने में लगने वाली संक्रियण एन्थेल्पी से $5~kJ~mol^{-1}$ कम है।
- (2) D गतिकतः स्थायी उत्पाद है।
- (3) C से A तथा B के बनने में संक्रियण एन्थेल्पी उच्चतम है।
- (4) C ऊष्मागतिकीय रूप से स्थिर उत्पाद है।
- A.
- **sol.** Activation enthalpy to form C is 5 kJ more than that to form D.

$$E_a = (A + B) \rightarrow C 15 \text{ KJ/mole}$$

$$E_a = (A + B) \rightarrow D \quad 10 \text{ KJ/mole}$$

In an acid-base titration, 0.1 M HCl solution was added to the NaOH solution of unknown strength. Which of the following correctly shows the change of pH of the titration mixture in this experiment? एक अम्ल क्षारक अनुमापन में, 0.1 M HCl विलयन को एक अज्ञात सामर्थ्य वाले NaOH के विलयन में मिलाया गया। इस प्रयोग में, निम्न में से कौन अनुमापन मिश्रण के pH–परिवर्तन को सही–सही प्रदर्शित करता है?

- **A**.
- sol. The pH of NaOH is more than 7 and during the titration it decreases so graph (1) is correct

Matrix JEE Academy

JEE (MAIN ONLINE) 2019

18. Hinsberg's reagent is

हिंसबर्ग अभिकर्मक है :

- $(1) C_6 H_5 SO_2 C1$
- (2) (COCl)₂
- $(3) C_6 H_5 COC1$
- (4) SOCl₂

- A. 1
- sol. Hinsberg's reagent is benzenesulphonyl chloride

- 19. The layer of atmosphere between 10 km to 50 km above the sea level is called as
 - (1) Stratosphere
- (2) Mesosphere
- (3) Thermosphere
- (4) Troposphere

समुद्र तल से ऊपर 10 km से 50 km के बीच की वायुमंडल पर्त को कहा जाता है:

- (1) स्ट्रेटोस्फीयर
- (2) मेसोस्फीयर
- (3) थर्मास्फीयर
- (4) ट्रोपोस्फीयर

- A. 1
- **sol.** Between 10-50 km above sea level lies stratosphere.
- **20.** Assertion: For the extraction of iron, haematite ore is used.

Reason: Haematite is a carbonate ore of iron.

- (1) Only the reason is correct
- (2) Only the assertion is correct
- (3) Both the assertion and reason are correct and the reason is the correct explanation for the assertion
- (4) Both the assertion and reason are correct, but the reason is not the correct explanation for the assertion कथन : आयरन के निष्कर्षण के लिए हेमाटाइट अयस्क प्रयुक्त होता है।

कारण : हेमाटाइट आयरन का कार्बोनेट अयस्क है।

- (1) केवल कारण सही है।
- (2) केवल कथन सही है।
- (3) कथन तथा कारण दोनों सत्य हैं और कारण, कथन की सही व्याख्या करता है।
- (4) कथन तथा कारण दोनों सत्य हैं परन्तु कारण, कथन की सही व्याख्या नहीं करता है।
- A. 2
- **sol.** For the extraction of iron, haematite ore in used.

Haematite = Fe_2O_3

21. At a given temperature T, gases Ne, Ar, Xe and Kr are found to deviate from ideal gas behaviour. Their equation of state is given as $P = \frac{RT}{V - h}$ at T.

Here, b is the van der Waal's constant. Which gas will exhibit steepest increase in the plot of Z (compression factor) vs P?

दिये गये ताप T पर यह पाया गया कि Ne, Ar, Xe तथा Kr गैसें आदर्श गैस व्यवहार से विचलित होती हैं। उनका अवस्था समीकरण

इस प्रकार दिया है $P = \frac{RT}{V - h}$; दिये गये T पर

यहाँ b वान्डरवाल्स स्थिरांक है। कौनसी गैस Z (संपीडनकारक) तथा P के प्लाट में सर्वाधिक खड़ी वृद्धि प्रदर्शित करेगी?

- (1) Kr
- (2) Ar
- (3) Xe
- (4) Ne

3 A.

 $P = \frac{RT}{V_m - b}$ sol.

 \Rightarrow $PV_m - Pb = RT$

 $\Rightarrow \frac{PV_M}{RT} = 1 + \frac{Pb}{RT}$

 \Rightarrow $Z = 1 + \frac{Pb}{RT}$

Slope of Z vs P curve (straight line) = $\frac{b}{PT}$

- Higher the value of b, more steeper will be the curve and $b \propto \text{size}$ of gas molecules *:* .
- 22. The amorphous form of silica is
 - (1) Quartz
- (2) Tridymite
- (3) Kieselguhr
- (4) Cristobalite

सिलिका का अक्रिस्टलीय रूप है:

- (1) क्वार्ट्स
- (2) ट्राइडाइमाइट
- (3) किजेलगुर
- (4) क्रिस्टोबेलाइट

3 A.

Quartz, tridymite and cristobalite are crystalline forms of silica. sol.

Kieselguhr is an amorphous form of silica.

- 23. The correct statements among I to III are
 - (I) Valence bond theory cannot explain the color exhibited by transition metal complexes.
 - (II) Valence bond theory can predict quantitatively the magnetic properties of transition metal complexes.
 - (III) Valence bond theory cannot distinguish ligands as weak and strong field ones.
 - (1) (II) and (III) only (2) (I), (II) and (III)
- (3) (I) and (II) only
- (4) (I) and (III) only

- I से III में से सही कथन हैं :
- (I) संक्रमण धातु संकरों द्वारा प्रदर्शित रंग को संयोजकता आबन्ध सिद्धान्त समझा नहीं सकता।
- (II) संक्रमण धातु संकरों के चुम्बकीय गुणों की मात्रात्मक प्रागुक्ति संयोजकता आबन्ध सिद्धान्त कर सकता है।
- (III) संयोजकता आबन्ध सिद्धान्त दुर्बल तथा प्रबल क्षेत्र के लिगेन्डों के बीच अन्तर नहीं बता सकता।
- (1) केवल (II) तथा (III) (2) (I), (II) तथा (III)
- (3) केवल (I) तथा (II)
- (4) केवल (I) तथा (III)

A.

Valence bond theory cannot predict quantitatively the magnetic properties of transition metal complex. sol.

- 24. In the following reaction carbonyl compound + MeOH $\stackrel{HCl}{\longleftarrow}$ acetal Rate of the reaction is the highest for
 - (1) Acetone as substrate and methanol in excess
 - (2) Propanal as substrate and methanol in stoichiometric amount
 - (3) Propanal as substrate and methanol in excess
 - (4) Acetone as substrate and methanol in stoichiometric amount निम्न अभिक्रिया में कार्बोनिल यौगिक + MeOH $\stackrel{HCl}{\longleftarrow}$ एसिटल अभिक्रिया की दर निम्न में से किसके लिए उच्चतम है?
 - (1) एसीटोन अवस्तर के रूप में तथा मेथेनॉल आधिक्य में
 - (2) प्रोपेनल अवस्तर के रूप में तथा मेथेनॉल स्टॉइकियोमीट्री मात्रा में
 - (3) प्रोपेनल अवस्तर के रूप में तथा मेथेनॉल आधिक्य में
 - (4) एसीटोन अवस्तर के रूप में तथा मेथेनॉल स्टॉइकियोमीट्री मात्रा में
- A. 3
- sol. $CH_3 C CH_3$ $CH_3 CH_2 CHO$

Generally, aldehydes are more reactive than ketones in nucleophilic addition reactions.

:. Rate of reaction with alcohol to form acetal and ketal is

$$CH_3-CH_2-CHO > CH_3-C-CH_3$$

- 25. The structures of beryllium chloride in the solid state and vapour phase, respectively, are
 - (1) Chain and dimeric (2) Dimeric and dimeric (3) Dimeric and chain (4) Chain and chain बेरीलियम क्लोराइड की संरचनाएं ठोस अवस्था तथा वाष्प प्रावस्था में क्रमशः हैं :
 - (1) शृंखला तथा द्विलक
- (2) द्विलक तथा द्विलक
- (3) द्विलक तथा शृंखला
- (4) शृंखला तथा शृंखला

- A. .
- **sol.** BeCl₂ in vapour phase exist as dimer (below 1200 K temperature) BeCl₂ in solid state has chain structure.
- **26.** p-Hydroxybenzophenone upon reaction with bromine in carbon tetrachloride gives कार्बन टेट्राक्लोराइड में ब्रोमीन के साथ अभिक्रिया करने पर p-हाइड्राक्सी बेंजोफेनोन देता है :

Matrix JEE Academy

JEE (MAIN ONLINE) 2019

A. 4

sol.

$$\begin{array}{c|c}
O & & O \\
C & & O \\
\uparrow & & \uparrow \\
-M \text{ group} & +M \text{ group}
\end{array}$$
OH
Br₂/CCl₄

$$\begin{array}{c|c}
O & & O \\
C & & O \\
Br
\end{array}$$

Product will formed as per –OH group (+M group)

27. The maximum possible denticities of a ligand given below towards a common transition and inner-transition metal ion, respectively, are

ट्रान्जिशन तथा इनर-ट्रान्जिशन धातु के प्रति नीचे दिये गये लिगैण्ड की अधिकतम सम्भव दन्तिकतायें क्रमशः हैं :

- (1) 6 and 8
- (2) 8 and 6
- (3) 8 and 8
- (4) 6 and 6

- (1) 6 तथा 8
- (2) 8 तथा 6
- (3) 8 तथा 8
- (4) 6 तथा 6

A. 1

- **sol.** The maximum possible denticities of the given ligand towards transition metal ion is 6 and towards inner transition metal ion is 8.
- 28. 10 mL of 1 mM surfactant solution forms a monolayer covering 0.24 cm² on a polar substrate. If the polar head is approximated as a cube, what is its edge length?

 $1~\mathrm{mM}$ पृष्ठ संक्रियक विलयन का $10~\mathrm{mL}$ एक पोलर अवस्तर पर एक मोनोलेयर बनाकर $0.24~\mathrm{cm^2}$ घेरता है। यदि पोलर हेड को एक घनक रूप में माना जाये तो इसके कोर की लम्बाई क्या होगी?

- $(1) 2.0 \, pm$
- $(2) 2.0 \, \text{nm}$
- (3) 0.1 nm
- $(4) 1.0 \, pm$

A. 1

sol. No. of surfactant molecule $6 \times 10^{23} \times \frac{10}{1000} \times 10^{-3}$

$$\Rightarrow$$
 6 × 10¹⁸ molecule

Let edge length = a cm

Total surface area of surfactant = 6×10^{18} a²

$$\Rightarrow 0.24 = 6 \times 10^{18} \text{ a}^2$$

$$a = 2 \times 10^{-10} \text{ cm} = 2 \text{ pm}$$

- Which one of the following about an electron occupying the 1s orbital in a hydrogen atom is incorrect? (The Bohr radius is represented by a_0)
 - (1) The probability density of finding the electron is maximum at the nucleus
 - (2) The electron can be found at a distance $2a_0$ from the nucleus

Matrix JEE Academy

JEE (MAIN ONLINE) 2019

- (3) The magnitude of the potential energy is double that of its kinetic energy on an average
- (4) The total energy of the electron is maximum when it is at a distance a_0 from the nucleus हाइड्रोजन परमाणु के 1s कक्षक में उपस्थित इलेक्ट्रॉन के बारे में निम्न में से कौनसा सही नहीं है? (बोर त्रिज्या को a_0 द्वारा प्रदर्शित किया गया है।)
- (1) इलेक्ट्रॉन के पाये जाने की प्रायिकता घनत्व नाभिक पर सर्वाधिक है।
- (2) इलेक्ट्रॉन, नाभिक से $2a_0$ की दूरी पर पाया जा सकता है।
- (3) औसतन, स्थितिज ऊर्जा का मान इसके गतिज ऊर्जा के मान का दुगुना है।
- (4) इलेक्ट्रॉन की कुल ऊर्जा उच्चतम तब होगी जब वह नाभिक से a_0 दूरी पर है।
- A. 4
- **sol.** The total energy of the electron is minimum when it is at a distance a_0 from the nucleus for 1 s orbital.
- **30.** The maximum number of possible oxidation states of actinoides are shown by
 - (1) Berkelium (Bk) and californium (Cf)
- (2) Neptunium (Np) and plutonium (Pu)
- (3) Actinium (Ac) and thorium (Th)
- (4) Nobelium (No) and lawrencium (Lr)

एक्टीन्वायडों की सम्भव ऑक्सीकरण अवस्थाओं की उच्चतम संख्या निम्न में से किसके द्वारा प्रदर्शित होती है?

- (1) बर्केलियम (Bk) तथा केलीफोर्नियम (Cf)
- (2) नेप्टयूनियम (Np) तथा प्लुटोनियम (Pu)
- (3) एक्टीनियम (Ac) तथा थोरियम (Th)
- (4) नोबेलियम (No) तथा लारेन्सियम (Lr)

- A. 2
- **sol.** Actinoids Oxidation state shown

Th +4

Ac +3

Pu +3, +4, +5, +6, +7

Np +3, +4, +5, +6, +7

Bk +3, +4

Cm +3, +4

Lr +3

:. Maximum oxidation state is shown by (Np and Pu)