JEE MAIN SEP 2020 (MEMORY BASED) | ${ }^{\text {th }}$ Sep. SHIFT-1

Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. Which orbitals are filled in $6^{\text {th }}$ period.
(1) $6 \mathrm{~s}, 4 \mathrm{f}, 5 \mathrm{~d}, 6 \mathrm{p}$
(2) $6 \mathrm{~s}, ~ 6 \mathrm{p}, ~ 5 \mathrm{f}, ~ 6 \mathrm{~d}$
(3) $6 \mathrm{~s}, ~ 6 \mathrm{p}, 6 \mathrm{~d}, 6 \mathrm{f}$
(4) $6 \mathrm{~s}, 5 \mathrm{f}, 6 \mathrm{p}, 6 \mathrm{~d}$

Ans. (1)
Sol. In $6^{\text {th }}$ period $6 \mathrm{~s}, 4 \mathrm{f}, 5 \mathrm{~d}$ and 6 p orbitals are gradually filled.
2. What is the correct electronic configuration and magnetic moment (spin only) for ${ }^{64} \mathrm{Gd}^{3+}$ ion.
(1) $[\mathrm{Xe}] 4 \mathrm{f}^{7}, 7.93 \mathrm{BM}$
(2) $[\mathrm{Xe}] 4 \mathrm{f}^{6} 6 \mathrm{~s}^{1}, 6.93 \mathrm{BM}$
(3) $[\mathrm{Xe}] 4 \mathrm{f}^{5} 6 \mathrm{~s}^{2}, 3.87 \mathrm{BM}$
(4) $[\mathrm{Xe}] 5 \mathrm{f}^{7}, 4.89 \mathrm{BM}$

Ans. (1)
Sol. Electronic configuration of ${ }^{64} \mathrm{Gd}=[\mathrm{Xe}] 4 \mathrm{~F}^{7} 5 \mathrm{~d}^{1} 6 \mathrm{~s}^{2}$

Electronic configuration of ${ }^{64} \mathrm{Gd}^{3+}=[\mathrm{Xe}] 4 \mathrm{~F}^{7} \Rightarrow$| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

No. of unpaired electron $(\mathrm{n})=7$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}=\sqrt{63}=7.93 \mathrm{BM}$
3. What is the correct order of acidic strength of α-hydrogens for the following compounds :
(a)

(b)

(c)

(d)

(1) (c) $>($ a) \geqslant (b) $>$ (d)
(2) (c) $>$ (a) $>$ (d) $>$ (b)
(3) (a) $>$ (b) $>$ (c) $>$ (d)
(4) (b) $>$ (a) $>$ (d) $>$ (c)

Ans. (1)
Sol. Acidic strength of α-Hydrogen \propto stability of conjugate base.
Order of stability of conjugate base.

Then order of acidic strength of α-Hydrogen.
(c) $>$ (a) $>$ (b) $>$ (d)

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
4. Which of the following is suggested to supress the effect of Noradrenaline:
(1) Analgesic
(2) Anti depressant drugs
(3)Anti histamine
(4)Anti inflammatory

Ans. (2)
Sol. If the level of noradrenaline is low for some reason, then the signal-sending activity becomes low, and the person suffers from depression. In such situations, antidepressant drugs are required.
5. Which one will be a correct diagram for micelle formation at CMC.

(1)

Ans. (1)
Sol. At CMC the anions are pulled into the bulk of the solution and aggregate to form a spherical shape with their hydrocarbon chains pointing towards the centre of the sphere with COO^{-}part remaining outward on the surface of the sphere.
6. The value of CFSE for complex having $3 \mathrm{~d}^{6}$ configuration in high spin is :
(1) $-0.4 \Delta_{0},-0.6 \Delta_{\mathrm{t}}$
(2) $-0.8 \Delta_{0},-0.6 \Delta_{\mathrm{t}}$
(3) $-0.4 \Delta_{0},-1.2 \Delta_{\mathrm{t}}$
(4) $-0.4 \Delta_{0},-0.27 \Delta_{\mathrm{t}}$

Ans. (1)
Sol. For $3 \mathrm{~d}^{6}$ configuration, (high spin complex)
(a) For octahedral complex

$$
3 \mathrm{~d}^{6}=\mathrm{t}_{2 \mathrm{~g}}{ }^{2,1,1,}, \mathrm{e}_{\mathrm{g}}{ }^{1,1}
$$

Value of CFSE $=\left[-0.4 \mathrm{nt}_{2 \mathrm{~g}}+0.6 \mathrm{ne}_{\mathrm{g}}\right] \Delta_{0}+\mathrm{n}(\mathrm{P})$
$=[-0.4 \times 4+0.6 \times 2] \Delta_{0}+0$
$=-0.4 \Delta_{0}$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
(b) For tetrahedral complex
$3 \mathrm{~d}^{6}=\mathrm{e}_{\mathrm{g}}{ }^{2,1,}, \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1}$
Value of CFSE $=\left[-0.6 \mathrm{ne}_{\mathrm{g}}+0.4 \mathrm{nt}_{2 \mathrm{~g}}\right] \Delta_{\mathrm{t}}+\mathrm{n}(\mathrm{P})$
$=[-0.6 \times 3+0.4 \times 3] \Delta_{\mathrm{t}}+0$
$=-0.6 \Delta_{\mathrm{t}}$
7. The following reaction is at equilibrium
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-58 . \mathrm{kJ} / \mathrm{mole}$
Following change are made then reaction will shift in which direction :

Increase in temperature

(1) towards product side
(2) towards reactant side
(3) towards reactant side
(4) towards product side

Increase pressure

towards product side towards product side towards reactant side towards reactant side

Ans. (2)
Sol. (a) $\mathrm{As} \Delta \mathrm{H}$ is negative so reaction is exothermic.
On increasing in temperature equilibrium will shift in backward direction (reactant side).
(b) $\Delta \mathrm{n}_{\mathrm{g}}<0$

On increasing in pressure equilibrium will shift in forward direction (product side).
8. Correct structure of $\mathrm{PCl}_{5}(\mathrm{~s})$ is :
(1) Square pyramidal
(2) Trigonal bipyramidal
(3) It exist as $\left[\mathrm{PCl}_{4}\right]^{+}$(square planar) \& $\left[\mathrm{PCl}_{6}\right]^{-}$(octahedral)
(4) It exist as $\left\{\mathrm{PCl}_{4}\right]^{+}$(tetrahedral) \& $\left[\mathrm{PCl}_{6}\right]^{-}$(octahedral)

Ans. (4)
Sol. $\quad 2 \mathrm{PCl}_{5}(\mathrm{~s}) \rightarrow\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{6}\right]^{-}$

	Hybridisation	Structure
$\left[\mathrm{PCl}_{4}\right]^{+}$	sp^{3}	tetrahedral
$\left[\mathrm{PCl}_{6}\right]^{-}$	$\mathrm{sp}^{3} \mathrm{~d}^{2}$	octahedral

9. Which of the following is not an essential amino acid :
(1) Valine
(2) Tyrosine
(3) Leucine
(4) Lysine

Ans. (2)
Sol. Tyrosine $\mathrm{HO}-\mathrm{CH}_{2}-\underset{\mathrm{CH}}{\mathrm{CH}}-\mathrm{COOH}$ is a non-essential amino acid.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in
10. When atmosphere become polluted
(1) When CO_{2} value is 0.03% in atmosphere
(2) When B.O.D. value is 5 ppm
(3) Due to presence of Eutrophication
(4) If concentration of dissolved oxygen of water is greater than 6 ppm

Ans. (3)
Sol. (1) In general in atmosphere CO_{2} is 0.03% by volume.
(2) Clean water would have B.O.D. value of less than 5 ppm whereas highly polluted water coluld have a
B.O.D value of 17 ppm or more.
(3) The process in which nutrient enriched water bodies support a dense plant population which kill animal life by depriving it of oxygen results in subsequent loss of biodiversity is known as Eutrophication.
(4) If the concentration of dissolved oxygen of water is below 6 ppm , the growth of fish get inhibited.
11. Difference in radius of $3^{\text {rd }}$ and $4^{\text {th }}$ orbit in in He^{+}ion is R_{1} and in Li^{2+} ion is R_{2}, then calculate ratio of $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
(1) $1: 2$
(2) $2: 1$
(3) $3: 2$
(4) $2: 3$

Ans. (3)
Sol. Radius of $\mathrm{n}^{\text {th }}$ orbit $=\mathrm{r}_{\mathrm{n}}=0.529 \times \frac{\mathrm{n}^{2}}{\mathrm{Z}} \AA$
(a) For He^{+}ion $(\mathrm{Z}=2)$
$\mathrm{r}_{4}-\mathrm{r}_{3}=\frac{0.529}{2}[16-9]=\mathrm{R}_{\mathrm{t}}$
(b) For Li^{2+} ion $(\mathrm{Z}=3)$
$r_{4}-r_{3}=\frac{0.529}{3}[16-9]=R_{2}$
Then value of $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{3}{2}$
12. For complete combustion of 1 mole of each propane and butane, find sum of minimum number of required moles of O_{2}.
Ans. 11.50
Sol. (1) Combustion reaction of $\mathrm{C}_{3} \mathrm{H}_{8}$.
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$
For 1 mole of $\mathrm{C}_{3} \mathrm{H}_{8}$, minimum 5 moles of O_{2} are required.
(2) Combustion reaction of $\mathrm{C}_{4} \mathrm{H}_{10}$
$\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\ell)$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

For 1 mole of $\mathrm{C}_{4} \mathrm{H}_{10}$, minimum 6.5 moles of O_{2} are required.
So total minimum moles of O_{2} required $=5+6.5=11.5$
13. How many isomers are possible for the complex $\left[\mathrm{Pt}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)_{2}\right]$

Ans. 09.00
Sol. For cis complex
number of isomers
Cis- $\mathrm{NO}_{2} \mid \mathrm{NO}_{2}$
2
Cis- $\mathrm{NO}_{2} \mid \mathrm{ONO}$
2
Cis-ONO|ONO
For trans complex
Trans- $\mathrm{NO}_{2} \mid \mathrm{NO}_{2}$
number of isomers

Trans- $\mathrm{NO}_{2} \mid \mathrm{ONO} \quad 1$
1

Trans-ONO|ONO 1
So total possible number of isomers are 9 .
14. $\mathrm{A} \longrightarrow$ product ($1^{\text {st }}$ order)
$\mathrm{B} \longrightarrow$ product ($1^{\text {st }}$ order)
Half life of $1^{\text {st }}$ reaction is 180 sec and for $2^{\text {nd }}$ reaction it is 300 sec . Initially $[A]=[B]$, then after how much time (in min) concentration of B become 4 time of concentration of A .
Ans. (15)
Sol. For $1^{\text {st }}$ order

$\left(\mathrm{C}_{0}\right)_{\mathrm{A}}=\left(\mathrm{C}_{0}\right)_{\mathrm{B}}$
$\left.\left(C_{t}\right)_{A}=\left(C_{D}\right)_{A}\right)^{-k_{A} t}$
(1), $\mathrm{k}_{\mathrm{A}}=\frac{\ln 2}{180}$
$\left(C_{t}\right)_{B}=\left(C_{0}\right)_{B} e^{-k_{B} t}$
(2), $\mathrm{k}_{\mathrm{B}}=\frac{\ln 2}{300}$

Divide Equation(1)/(2).
$\frac{\left(C_{t}\right)_{B}}{\left(C_{t}\right)_{A}}=\frac{\left(C_{0}\right)_{B}}{\left(C_{0}\right)_{A}} \times e^{\left(k_{A}-k_{B}\right) t}\left[\left(C_{t}\right)_{B}=4\left(C_{t}\right)_{A}\right]$ at time t.
$4=e^{\left(k_{A}-k_{\mathrm{B}}\right) t}$
$2 \ln 2=\left[\frac{\ln 2}{180}-\frac{\ln 2}{300}\right] \mathrm{t}$
$2=\left(\frac{120}{180 \times 300}\right) \mathrm{t}$
$\mathrm{t}=\frac{2 \times 180 \times 300}{120}=900 \mathrm{sec}=15 \mathrm{~min}$
15. For galvanic cell
$\mathrm{M}^{2+}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{M}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq}) ; \quad \Delta \mathrm{G}^{0}=-386 \mathrm{~kJ} / \mathrm{mole}$
The value of $\mathrm{E}_{\text {cell }}^{0}($ in $V)$ is -
Ans. (2)
Sol. For galvanic cell

$$
\begin{aligned}
& \Delta \mathrm{G}^{0}=-\mathrm{nF} \mathrm{E}_{\text {cell }}^{0} \\
& \Delta \mathrm{G}^{0}=-386 \times 10^{3}, \mathrm{n}=2, \mathrm{~F}=96500 \mathrm{C} \\
& -386 \times 10^{3}=-2 \times 96500 \times \mathrm{E}_{\text {cell }}^{0} \\
& \mathrm{E}_{\text {cell }}^{0}=2 \mathrm{~V}
\end{aligned}
$$

16. Calculate denticity of $[\text { EDTA }]^{4}$.

Ans. (6)
Sol. Structure of $[E D T A]^{4}$.

Number of donor sites $=6$. So denticity will be 6 .
17. A diatomic molecule crystallize in BCC structure with edge length of unit cell is 300 pm and density is $6.17 \mathrm{gm} /$ cm^{3} then calculate total number of molecules in 200 gram crystal.
(1) $4 N_{A}$
(2) $8 \mathrm{~N}_{\mathrm{A}}$
(3) $40 \mathrm{~N}_{\mathrm{A}}$
(4) $400 \mathrm{~N}_{\mathrm{A}}$

Ans. (1)
Sol. For BCC $[Z=2]$
$\mathrm{d}=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \text { Volume }}=6.17 \mathrm{gm} / \mathrm{cm}^{3}$
$\left[Z=2\right.$, Volume $\left.=a^{3}, a=3 \times 10^{-8} \mathrm{~cm}\right]$
$6.17=\frac{2 \times \mathrm{M}}{6.02 \times 10^{23} \times\left[3 \times 10^{-8}\right]^{3}}$
$6.17=\frac{2 \times \mathrm{M}}{6.02 \times 2.7}$
$\mathrm{M}=50 \mathrm{gm}=$ molecular mass

So number of total moles $=\frac{200}{50}=4$
Then total number of molecules $=4 \mathrm{~N}_{\mathrm{A}}$
18. Identify the correct potential energy curve for the formation of H_{2} molecule as a function of internuclear distance of the H atoms
(1)

(2)

(3)

(4)

Ans. (1)
Sol. Following curve is for potential energy for the formation of H_{2} molecule as a function of internuclear distance of the H atoms. The minimum in the curve corresponds to the most stable state of H_{2} (from NCERT).

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
19. Select the correct statement about Ellingham diagram.
(a) Ellingham diagram is graph between $\Delta \mathrm{H}_{\mathrm{f}}^{0} \& T$ if any metal or element oxide.
(b) Any metal will reduce the oxide of other metals which lie above it in the Ellingham diagram.
(c) Any mental will reduce theoxide of other metals which lie lower it in the Ellingham diagram
(d) Slope of $\Delta \mathrm{G}^{0}$ Vs T plot of the reaction $\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$ is negative
(1) b, d
(2) c, d
(3) a, b, d
(4) a, c, d

Sol. Ellingham diagram is graph of $\Delta \mathrm{G}^{0}$ vs T of any/ element oxide. Since
$\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{0}$
for most metal oxide formation
metal (s) + oxygen (g) \rightarrow metal oxide (s)
$\Delta H^{0}=-\mathrm{ve}$
$\Delta \mathrm{S}^{0}=-\mathrm{ve}$
so graph will be a straight line with - ve $y-$ intracept $\&+$ ve slope.
20.
\ln (rate)

Observe the above given plot of $\ln ($ rate $) \mathrm{v} / \mathrm{s}$ time in minutes for a first order reaction and select the correct option for $T_{1 / 2}$ for A, B, C.
(1) $2: 4 \ngtr 1$
(2) $2: 4: 3$
(3) $3: 2: 4$
(4) $2: 3: 4$

Ans. (1)
Sol. For a $1^{\text {st }}$ order reaction $\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{0} \mathrm{e}^{-\mathrm{kt}}$
rate $=\mathrm{KC}_{0} \mathrm{e}^{-\mathrm{kt}}$
$\ln ($ rate $)=-\mathrm{kt}+\ln \left(\mathrm{KC}_{0}\right)$
So graph between \ln (rate) and time will be straight line with slope $=-K$.
$\mathrm{K}_{\mathrm{A}}=\frac{10}{8}, \mathrm{~K}_{\mathrm{B}} \frac{5}{8} \operatorname{and} \mathrm{~K}_{\mathrm{C}}=\frac{5}{2}=\frac{20}{8}$
Since $\mathrm{T}_{\frac{1}{2}}=\frac{\operatorname{In} 2}{\mathrm{~K}}$,
So $\mathrm{T}_{\mathrm{A}}: \mathrm{T}_{\mathrm{B}}: \mathrm{T}_{\mathrm{C}}=\frac{1}{\mathrm{~K}_{\mathrm{A}}}: \frac{1}{\mathrm{~K}_{\mathrm{B}}}: \frac{1}{\mathrm{~K}_{\mathrm{C}}}$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in
$=\frac{8}{10}: \frac{8}{5}: \frac{8}{20}$
$=2: 4: 1$
21.

Structure of Q is :
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

22. Arrange the following in increasing order of basicity :
(A)

(B)

(C)

(D)

(1) A $<$ B $<$ D $<$ C
(2) C $<$ A $<$ D $<$ B
(3) B $<$ D $<$ C $<$ A
(4) C $<$ A $<$ B $<$ D

Ans. (2)

Sol. (A)

(B)

(C)

(D)
 Nitrogen atom is sp^{2} hybridsed and lone pair is has partial negative charge due to resonance.
23. Which one of the following reaction is used for preparation of water gas on commercial scale.
(1) $\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \xrightarrow{473-1273 \mathrm{~K}} \mathrm{Co}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}$
(2) $2 \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{~N}_{2(\mathrm{~g})} \xrightarrow{1273 \mathrm{~K}} 2 \mathrm{CO}_{(\mathrm{g})}+2 \mathrm{~N}_{2(\mathrm{~g})}$
(3) $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \xrightarrow{473-1273 \mathrm{~K}} \mathrm{CO}_{(\mathrm{g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
(4) $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

Ans. (1)
Sol. $\quad \mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \xrightarrow{473-1273 \mathrm{~K}} \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}$ (water gas).

