(4) $NH_4Cl + N_2$

JEE MAIN SEP 2020 (MEMORY BASED) | 5th Sep. SHIFT-2

Note: The answers are based on memory based questions which may be incomplete and incorrect.

- **1.** In pure form H_2O_2 is found as:
 - (1) Linear, Blue colour (2) Linear, Colourless
 - (3) Planar, Blue colour (4) Non planar, Blue colour
- Ans. (4)
- Sol. Structure of H_2O_2 is of open book shape. It is a colour less viscous liquid but in large quantity appears blue in colour.
- 2. The products obtained by reaction of ammonia with excess of Chlorine are :

(1) $NH_4Cl + HCl$ (2) $NCl_3 + N_2$ (3) $NCl_3 + HCl$

Ans. (3)

Sol.
$$NH_3 + 3Cl_2 \rightarrow NCl_3 + 3HCl$$

limiting excess

- $8 \text{NH}_3 \ + \ 3 \text{Cl}_2 \ \rightarrow \ 6 \text{NH}_4 \text{Cl} \ + \ \text{N}_2$
- excess limiting

1D

3. A diatomic gas expands adiabatically in such a way that final density is 32 times of initial density and final pressure become N times of initial pressure. The value of N is :

(1) 128 (2)
$$\frac{1}{32}$$
 (3) 32 (4) $\frac{1}{128}$

- Ans. (1)
- Sol. for diatomic gas $\gamma = \frac{7}{5}$
 - 3. Use $PV^{\gamma} = K$

$$\mathbf{P}_1 \mathbf{V}_1^{\gamma} = \mathbf{P}_2 \mathbf{V}_2^{\gamma} \qquad \qquad \Rightarrow = \frac{\mathbf{P}_2}{\mathbf{P}_1} = \left(\frac{\mathbf{V}_1}{\mathbf{V}_2}\right)^{\gamma}$$

cis- $[Co(en)_2Cl_2]^+ \rightarrow$ Plane of symmetry is absent so will be optically acitve

MATRIX

8. For the reaction, $x + y \Longrightarrow 2z$

initially 1 mol of x, 1.5 mole of y and 0.5 mole z are taken, then at equilibrium 1 mole of z is formed

If
$$k_{eq} = \frac{X}{15}$$
 then, find the value of 'X'.

Ans. (16.00)

Sol.

$$x + y \rightleftharpoons 2z$$

t = 0 1 mol 1.5 mol 0.5 mol

Since moles of Z are increased at equilibrium therefore reaction goes in forward direction to attain the equilibrium.

$$x + y \rightleftharpoons 2z$$

$$t = 0 \quad 1 \quad 1.5 \quad 0.5$$

$$t = t_{eq} \quad 1 - a \quad 1.5 - a \quad 0.5 + 2a = 1 \text{ mol}$$

$$\Rightarrow a = 0.25$$

$$x + y \longrightarrow 2z$$

$$0.75 \quad 1.25 \quad 1 \text{ mol}$$

$$k_{eq} = \frac{[z]^2}{[x][y]} = \frac{(1)^2}{0.75 \times [1.25]} = \frac{X}{15}$$

$$X = \frac{15}{(0.75 \times 1.25)} = 16$$

9. Which of the following has maximum bond angle [consider C, N, O, S as central atom]

(1) H_2O (2) H_2S (3) NH_3 (4) CH_4

Ans. (4)

Sol. For same hybridisation

Bond angle
$$\propto \frac{1}{\text{no of lone pair on central atom}}$$

MATRIX

 sp^3 , ℓ . p = 2, B. A. = 104°30'

 $H_2S \rightarrow No$ hybridisation [Drago's rule], bond angle = 92°

 ${}^{\bullet\bullet}_{NH_2}$ sp³ ℓ .p = 1, B.A. = 107°

 $CH_4 sp^3$, $\ell. p = 0, B. A. = 109^{\circ}28'$

10. Which of the following compound will show geometrical Isomerism?

Ans. (1)

- Sol. Restricted rotation on double bond or ring structure with 2 different groups attached 2 C atoms present on system of restricted rotation generates Geometrical isomerism
- 11. Which one of the following is not a condensation polymer?
 - (3) Buna-N (1) Nylon-6 (2) Nylon-6,6 (4) Bakelite
- Ans. (3)

Sol. (1)
$$H_2 - N - (CH_2)_5 - COOH \longrightarrow -(NH - (CH_2)_5 - C_{In}^{O})_{G_1}^{O}$$

6-Aminohexanoic acid Nylon-6
(2) $nH_2N - (CH_2)_6 - NH_2 + nHOOC - (CH_3)_4 - COOH \longrightarrow -(-NH - (CH_2)_6 - NH - C - (CH_2)_4 - C_{-In}^{O})_{Hexamethylene}$ Adipic acid Nylon-6,6
(3) $nCH_2 = CH - CH = CH_2 + nCH_2 = CH$ $Copolymerisation + (-CH_2 - CH = CH - CH_2 - CH_2 - CH_3)_{Have a result of the transformed of the transforme$

MATRIX JEE ACADEMY Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911 Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

I CH,OH

CHEMISTRY

13. Brompheniramine is used as a drug for what purpose?

16. How many chiral carbon atoms are present in structure of sucrose?

Ans.

(9)

* represents chiral carbon atom

CHEMISTRY

17. Which of the following statement is correct regarding probability density for different subshell (except infinity)

- (1) For $2p \neq 0$ (2) For 3p = 0(3) For 1s = 0(4) For $2s \neq 0$
- Ans. (2)

Sol. From the following ψ^2 vs r plot (ψ^2 = probability density) ψ^2 can be zero for 3p orbital other than infinity.

18. The minimum distance between the centre of two octahedral voids in FCC present on edge centre is

- (1) a (2) $\frac{a}{2}$ (3) $\frac{a}{\sqrt{2}}$ (4) $\sqrt{2a}$
- Ans. (3)
- Sol. In FCC octahedral voids are present at the edge centres and body centre position.

Minimum distance between centres of two octahedral voids

$$= x = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a}{2}\right)^2} = \sqrt{\frac{a^2}{4} + \frac{a^2}{4}} = \frac{a}{\sqrt{2}}.$$

CHEMISTRY

Ans.

Sol.

21. $\lambda_{\rm M}$ vs \sqrt{C} is plotted for a certain electrolyte then which electrolyte is correct for this graph

