## JEE MAIN SEP 2020 (MEMORY BASED) | $5^{\text {th }}$ Sep. SHIFT-2

Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. In pure form $\mathrm{H}_{2} \mathrm{O}_{2}$ is found as:
(1) Linear, Blue colour
(2) Linear, Colourless
(3) Planar, Blue colour
(4) Non planar, Blue colour

Ans. (4)
Sol. Structure of $\mathrm{H}_{2} \mathrm{O}_{2}$ is of open book shape. It is a colour less viscous liquid but in large quantity appears blue in colour.
2. The products obtained by reaction of ammonia with excess of Chlorine are :
(1) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{HCl}$
(2) $\mathrm{NCl}_{3}+\mathrm{N}_{2}$
(3) $\mathrm{NCl}_{3}+\mathrm{HCl}$
(4) $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{N}_{2}$

Ans. (3)
Sol. $\mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}+3 \mathrm{HCl}$
limiting excess
$8 \mathrm{NH}_{3}+3 \mathrm{Cl}_{2} \rightarrow 6 \mathrm{NH}_{4} \mathrm{Cl}+\mathrm{N}_{2}$
excess limiting
3. A diatomic gas expands adiabatically in such a way that final density is 32 times of initial density and final pressure become Ntimes of initial pressure. The value of N is :
(1) 128
(2) $\frac{1}{32}$
(3) 32
(4) $\frac{1}{128}$

Ans. (1)
Sol. for diatomic gas $\gamma=\frac{7}{5}$
3. Use $P V^{\gamma}=K$

$$
\mathrm{P}_{1} \mathrm{~V}_{1}^{\gamma}=\mathrm{P}_{2} \mathrm{~V}_{2}^{\gamma}
$$

$$
\Rightarrow=\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma}
$$

Given $\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}=32=\frac{\frac{\mathrm{m}}{\mathrm{V}_{2}}}{\frac{\mathrm{~m}}{\mathrm{~V}_{1}}}=32$
$\Rightarrow \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=32$
$\frac{P_{2}}{P_{1}}=2^{7}$
$\Rightarrow \mathrm{P}_{2}=128 \mathrm{P}_{1}$
4. $(\mathrm{A})=\operatorname{cis}\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{\oplus} \&(\mathrm{~B})=\operatorname{trans}\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{\oplus}$

Which of the above complexes is / are optically active?
(1) Only A
(2) Only B
(3) Both
(4) None

Ans. (1)
Sol.


Trans- $\left[\mathrm{Co}(\text { en })_{2} \mathrm{Cl}_{2}\right]^{+} \rightarrow$ Have Plane of symmetry so will be optically inactive.

cis-[Co(en) $\left.)_{2} \mathrm{Cl}_{2}\right]^{+} \rightarrow$ Plane of symmetry is absent so will be optically acitve
5. Boron and silicon can be obtained in pure form by
(1) Electrolytic refining
(2) Vapour phase refining
(3) Zone refining
(4) Mond's process

Ans. (3)
Sol. Semicondutors like Germanium, Silicon, Boron, Gallium and Indium can be obtained in pure state by zone refining process.
6. $0.02 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is treated with 0.288 gram of Ferrous oxalate. How much volume (in mL ) of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is required?

Ans. 100.00
Sol. milliequivalent of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=$ milliequivalent of $\mathrm{FeC}_{2} \mathrm{O}_{4}$
n -factor of $\mathrm{k}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=6$
n-factor of $\mathrm{FeC}_{2} \mathrm{O}_{4}=3$
$\mathrm{V}_{\mathrm{ml}} \times 0.02 \times 6=\frac{0.288}{144} \times 3 \times 1000$
$\mathrm{V}_{\mathrm{ml}} \times 0.02 \times 6=2 \times 6$
$\mathrm{V}_{\mathrm{ml}}=100 \mathrm{ml}$
7. For the following reaction, $2 \mathrm{~A}(\mathrm{~g}) \longrightarrow \mathrm{A}_{2}(\mathrm{~g})$
following data is obtained at $298 \mathrm{~K} . \Delta \mathrm{U}=-20 \mathrm{~kJ}, \Delta \mathrm{~S}=-30 \mathrm{~J}$ then find $\Delta \mathrm{G}$ (in kJ).
Ans. (-13.5)
Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

$$
\begin{aligned}
\Delta \mathrm{H} & =\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT} \\
\Delta \mathrm{H} & =-20 \times 1000-1 \times 8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K} \times 298 \mathrm{~K} \\
& =-22477.572 \mathrm{~J} \\
& =-13537.572 \mathrm{~J} \\
& =-13.5 \mathrm{~kJ}
\end{aligned}
$$

8. For the reaction, $\mathrm{x}+\mathrm{y} \rightleftharpoons 2 \mathrm{z}$
initially 1 mol of $x, 1.5$ mole of $y$ and 0.5 mole $z$ are taken, then at equilibrium 1 mole of $z$ is formed If $\mathrm{k}_{\mathrm{eq}}=\frac{\mathrm{X}}{15}$ then, find the value of ' X '.

Ans. (16.00)
Sol.

$$
\mathrm{x}+\mathrm{y} \rightleftharpoons 2 \mathrm{z}
$$

$\mathrm{t}=0 \quad 1 \mathrm{~mol} \quad 1.5 \mathrm{~mol} \quad 0.5 \mathrm{~mol}$
Since moles ofZ are increased at equilibrium therefore reaction goes in forward direction to attain the equilibrium.

9. Which of the following has maximum bond angle [consider $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{S}$ as central atom]
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{H}_{2} \mathrm{~S}$
(3) $\mathrm{NH}_{3}$
(4) $\mathrm{CH}_{4}$

Ans. (4)
Sol. For same hybridisation
Bond angle $\propto \frac{1}{\text { no of lone pair on central atom }}$


Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in
$\mathrm{sp}^{3}, \ell . \mathrm{p}=2, \mathrm{~B} . \mathrm{A} .=104^{\circ} 30^{\prime}$
$\mathrm{H}_{2} \mathrm{~S} \rightarrow$ No hybridisation [Drago's rule], bond angle $=92^{\circ}$

$$
\begin{aligned}
& \ddot{\mathrm{N}} \mathrm{H}_{3} \mathrm{sp}^{3} \ell \cdot \mathrm{p}=1, \mathrm{~B} \cdot \mathrm{~A} .=107^{\circ} \\
& \mathrm{CH}_{4} \mathrm{sp}^{3}, \ell \cdot \mathrm{p}=0, \mathrm{~B} . \mathrm{A} .=109^{\circ} 28^{\prime}
\end{aligned}
$$

10. Which of the following compound will show geometrical Isomerism?
(1)

(2)

(3)

(4)


Ans. (1)
Sol. Restricted rotation on double bond or ring structure with 2 different groups attached 2 C atoms present on system of restricted rotation generates Geometrical isomerism
11. Which one of the following is not a condensation polymer?
(1) Nylon-6
(2) Nylon-6,6
(3) Buna-N
(4) Bakelite

Ans. (3)

Sol. (1)

(2) $\mathrm{nH}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}_{2}+\mathrm{nHOOC}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{COOH}-$
 diamine

Nylon-6
6-Aminohexanoic acid

Nylon-6,6
Adipic acid

(4)


## MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in

12.


The product will be :
(1)

(2)

(3)

(4)


Ans. (3)

Sol.


13. Brompheniramine is used as a drug for what purpose?


Brompheniramine
(1) Antidepresent
(2)Anithistamines
(3) Antiseptic
(4) Analgensic

Ans. (2)
Sol. Synthetic drugs, brompheniramine (Dimetapp) act as antihistamine.
14. Which is the correct decreasing order of Boiling point for given compounds?

(i)

(ii)

(iii)

(iv)
(1) (ii) $>$ (iii) $>$ (iv) $>$ (iv)
(2) (ii) $>$ (i) $>$ (iv) $>$ (iii)
(3) (i) $>$ (iii) $>$ (iv) $>$ (ii)
(4) (i) $>$ (iii) $>$ (ii) $>$ (iv)

Ans. (1)

Sol.
(i)

B.P $\rightarrow 202^{\circ} \mathrm{C}$
(ii)

B.P $\rightarrow 284^{\circ} \mathrm{C}$
15.


Product 'C' will be :
(1)

(2)

(3)

(4)


Ans. (2)

Sol.





16. How many chiral carbon atoms are present in structure of sucrose?

Ans. (9)

Sol.


* represents chiral carbon atom

17. Which of the following statement is correct regarding probability density for different subshell (except infinity)
(1) For $2 p \neq 0$
(2) For $3 p=0$
(3) For $1 \mathrm{~s}=0$
(4) For $2 \mathrm{~s} \neq 0$

Ans. (2)
Sol. From the following $\psi^{2} \operatorname{vs} r \operatorname{plot}\left(\psi^{2}=\right.$ probability density $) \psi^{2}$ can be zero for 3 p orbital other than infinity.
1s

2s

2p

$\underbrace{\text { 4 }}_{\rightarrow r}$
18. The minimum distance between the centre of two octahedral voids in FCC present on edge centre is
(1) a
(2) $\frac{a}{2}$
(3) $\frac{a}{\sqrt{2}}$
(4) $\sqrt{2} a$

Ans. (3)
Sol. In FCC octahedral voids are present at the edge centres and body centre position.


Minimum distance between centres of two octahedral voids
$=x=\sqrt{\left(\frac{a}{2}\right)^{2}+\left(\frac{a}{2}\right)^{2}}=\sqrt{\frac{a^{2}}{4}+\frac{a^{2}}{4}}=\frac{a}{\sqrt{2}}$.
19. Observe the following plot of $\operatorname{lnk} \mathrm{vs} \frac{10^{3}}{\mathrm{~T}}$ where T is temperature find activation energy (in kJ )

(1) R
(2) $\frac{1}{R}$
(3) $2 R$
(4) $\frac{2}{R}$

Ans. (3)
Sol. $\mathrm{k}=\mathrm{Ae}^{-\mathrm{EaRT}}$

$$
\begin{aligned}
& \ln \mathrm{k}=\ln \mathrm{A}-\left(\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right) \frac{1}{\mathrm{~T}} \\
& \ln \mathrm{k}=\ln \mathrm{A}-\left(\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R} \times 10^{3}}\right) \times \frac{10^{3}}{\mathrm{~T}}
\end{aligned}
$$

Slope of graph $=\frac{-\mathrm{E}_{\mathrm{a}}}{\mathrm{R} \times 10^{3}}=\frac{-10}{5}$

$$
\mathrm{E}_{\mathbf{a}}=2 \mathrm{R} \times 10^{3} \mathrm{~J}
$$

$\mathrm{E}_{\mathrm{a}}=2 \mathrm{RkJ}$
20. Plot of of $\mathrm{x} / \mathrm{m}$ vs P for a gas at different T is given then which one of the following graph is correct?
(1)

(2)

(3)

(4)


Ans. (2)
Sol. From Freundlich adsorption isotherm
$\frac{\mathrm{x}}{\mathrm{m}} \propto \mathrm{P}($ At low pressure $)$
$\frac{\mathrm{x}}{\mathrm{m}} \propto \mathrm{P}^{1 / \mathrm{n}}$ (at moderate pressure)
$\frac{\mathrm{x}}{\mathrm{m}} \propto \mathrm{P}^{\mathrm{o}}($ At high pressure $)$
$\rightarrow$ On increasing temperature physical adosroption decreases.


## MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email :smd@matrixacademy.co.in
21. $\lambda_{M}$ vs $\sqrt{C}$ is plotted for a certain electrolyte then which electrolyte is correct for this graph

(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) HCl
(3) $\mathrm{KNO}_{3}$
(4) NaCl

Ans. (1)
Sol. Graph represent variation of $\lambda_{M}$ with respect to $\sqrt{C}$ for weak electrolyte.
22. Correct order of following species in the increasing order of their size is:
$\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}$
(1) $\mathrm{Al}^{3+}, \mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{F}^{-}, \mathrm{O}^{2-}, \mathrm{N}^{3-}$
(2) $\mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}$
(3) $\mathrm{Al}^{3+}, \mathrm{Mg}^{2+}, \mathrm{Na}^{+}, \mathrm{N}^{3-}, \mathrm{O}^{2-}, \mathrm{F}^{-}$
(4) $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{F}^{-}, \mathrm{O}^{2-}, \mathrm{N}^{3-}$

Ans. (1)
Sol. For isoelectronic species

$\mathrm{Al}^{3+}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
All are isoelectronic species so more is the $\mathrm{z}_{\text {eff }}$ less will be the ionic size.

