JEE MAIN SEP 2020 (MEMORY BASED) | 4 ${ }^{\text {th }}$ Sep. SHIFT-1

Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. The correct order of ionic radii of $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na}^{+}, \mathrm{Mg}^{2+}$
(1) $\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}$
(2) $\mathrm{O}^{2-}>\mathrm{Mg}^{2+}>\mathrm{F}^{-}>\mathrm{Na}^{+}$
(3) $\mathrm{Na}^{+}>\mathrm{O}^{2-}>\mathrm{F}^{-}>\mathrm{Mg}^{2+}$
(4) $\mathrm{F}^{-}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{O}^{2-}$

Ans. (1)
$\mathrm{O}^{2-} \quad \mathrm{F}^{-} \quad \mathrm{Na}^{+} \quad \mathrm{Mg}^{2+}$
Sol. $\quad \frac{Z}{\mathrm{e}}=\frac{8}{10} \quad \frac{9}{10} \quad \frac{11}{10} \quad \frac{12}{10}$

Size of isoelectronic species $\propto \frac{1}{\mathrm{Z} / \mathrm{e}}$
$\frac{\mathrm{Z}}{\mathrm{e}} \uparrow \operatorname{size} \downarrow$
2. Which of the following complexes have same spin only magnetic moment
(1) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \&\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(2) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \&\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(3) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \&\left[\mathrm{Co}(\mathrm{Cl})_{4}\right]^{2}$
(4) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \&\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Ans. (1)
Sol. $\quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\mathrm{R}}^{2+}, \mathrm{Cr}^{2+}\left(3 \mathrm{~d}^{4}\right), \mathrm{t}_{2 \mathrm{~g}}{ }^{1.1,1} \mathrm{e}_{\mathrm{g}}{ }^{1,0}, \mathrm{n}=4$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{Fe}^{2+}\left(3 \mathrm{~d}^{6}\right), \mathrm{t}_{2 \mathrm{~g}}{ }^{2,1,1} \mathrm{e}_{\mathrm{g}}{ }^{1,1}, \mathrm{n}=4$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{Cr}^{3+}\left(3 \mathrm{~d}^{3}\right), \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1} \mathrm{e}_{\mathrm{g}}{ }^{0,0}, \mathrm{n}=3$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}, \mathrm{Fe}^{3+}\left(3 \mathrm{~d}^{5}\right), \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1} \mathrm{e}_{\mathrm{g}}{ }^{1,1}, \mathrm{n}=5$
$\left[\mathrm{COCl}_{4}\right]^{2-}, \mathrm{CO}^{2+}\left(3 \mathrm{~d}^{7}\right), \mathrm{e}_{\mathrm{g}}{ }^{2,2}, \mathrm{t}_{2 \mathrm{~g}}{ }^{1,1,1} \mathrm{n}=3$
$\left[\mathrm{CO}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}, \mathrm{CO}^{2+}\left(3 \mathrm{~d}^{7}\right), \mathrm{t}_{2 \mathrm{~g}}{ }^{2,2,1} \mathrm{e}_{\mathrm{g}}^{1,1} \mathrm{n}=3$
3. The combustion of $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ in excess of air gives major oxides :
(1) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}_{2}, \mathrm{KO}_{2}$
(2) $\mathrm{Li}_{2} \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{KO}_{2}$
(3) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{NaO}_{2}, \mathrm{KO}_{2}$
(4) $\mathrm{LiO}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}, \mathrm{~K}_{2} \mathrm{O}_{2}$

Ans. (1)
Sol. $\quad \mathrm{Li}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{Li}_{2} \mathrm{O}$
(Normal oxide)

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} \underset{\text { (per oxide) }}{\mathrm{Na}_{2} \mathrm{O}_{2}}
$$

$\mathrm{K}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta} \mathrm{KO}_{2}$ (super oxide)
4. Total Number of possible isomers in $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NO}_{2}\right)_{2}\right]$
(1) 3
(2) 1
(3) 2
(4) 4

Ans. (1)
Sol. Donor atoms of NO_{2} ligands

N, N

N, O

O, O
5. Lead nitrate on heating gives brown colour gas X, X on cooling gives Y, Y react with $N O$ gives Z (blue solid/ liquid). Find oxidation number of N in compound Z .
(1) +2
(2) +3
(3) +4
(4) +5

Ans. (2)
Sol. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \xrightarrow{\Delta} \mathrm{PbO}(\mathrm{s})+2 \mathrm{NO}_{2} \uparrow+\frac{1}{2} \mathrm{O}_{2} \uparrow$
Browngas
(X)

$$
(\mathrm{Y})
$$

6. Select the correct statement(s)
(a) Mond process used for Ni
(b) Van arkel process used for Ti and Zr
(c) In extraction of silver, Ag present in anionic complex.
(d) In metallurgy of Iron, lime stone is converted to CaO .
(1) (a), (b) and (c) only
(2) (a) and (c) only
(3) (b), (c) and (d) only
(4) (a), (b), (c) and (d)

Ans. (4)

Sol.

(b) $\mathrm{M}+2 \mathrm{I}_{2} \longrightarrow \mathrm{MI}_{4} \longrightarrow \underset{\text { Pure }}{\mathrm{M}=\mathrm{Ti} / \mathrm{Zr})} \boldsymbol{\Delta} \underset{\text { Pure }}{\mathrm{M}}+2 \mathrm{I}_{2}$ (c) $\mathrm{Ag}+2 \mathrm{NaCN} \longrightarrow \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ Soluble complex.
7. Select the correct statement regarding element $\mathrm{A}($ atomic no. $=101)$ and element $\mathrm{B}($ atomic no. $=104)$.
(1) Element A is actinoid and B is $4^{\text {th }}$ group element
(2) Element A is actinoid and B is $6^{\text {th }}$ group element
(3) Element B is actinoid and A is $4^{\text {th }}$ group element
(4) Element B is actinoid and A is $6^{\text {th }}$ group element

Ans. (1)
Sol. $A(Z=101) \Rightarrow$ Actinoid
\Rightarrow Actinoid having atomic no. 89 to 103
$B(Z=104) \Rightarrow$ group $4^{\text {th }}$.
8. Using following potential energy graph identify correct option.

Potential
Energy (KJ)

(1) D has highest electronegativity.
(2) Bond length of A-B bond is greater than A-C bond.
(3)A-D has minimum bond length.
(4) A-B has most stiff(strong) bond.

MATRIX IE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in

Ans. (4)
Sol. Bond enthalpy of AB bond is highest so $\mathrm{A}-\mathrm{B}$ bond is more strong and B is highest electronegative atom.
Order of bond length $\Rightarrow \mathrm{A}-\mathrm{A}<\mathrm{A}-\mathrm{B}<\mathrm{A}-\mathrm{C}<\mathrm{A}-\mathrm{D}$
9. How many grams of NH_{3} are produced when 2.8 kg of N_{2} reacts with $1 \mathrm{~kg} \mathrm{of} \mathrm{H}_{2}$?

Ans. $\quad 3400 \mathrm{~g}$
Sol.

$$
\mathrm{N}_{2} \quad+3 \mathrm{H}_{2} \quad \rightarrow \quad 2 \mathrm{NH}_{3}
$$

Number of mole initially $\frac{2800}{28}=100 \quad \frac{1000}{2}=500 \quad 0$
Number of mole finally 0200200
mass of NH_{3} Produced $=200 \times 17=3400$ gram
10. A Ist order reaction gets completed 75% in 90 mins , then time for 60% completion will be :

Ans. $\quad 60 \mathrm{mins}$
Sol. $\quad 90=\frac{2.303}{\mathrm{k}} \log \frac{100}{25}$

$$
\begin{equation*}
\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{100}{40} \tag{1}
\end{equation*}
$$

Divide equation 1 by 2
$\frac{90}{t}=\frac{\log 4}{\log 2.5}$
$\mathrm{t}=60 \mathrm{mins}$.
11. An ideal solution containing 3 mole n-heptane and 1 mole n-hexane has total vapour pressure 550 mm of Hg . When 1 mole n-heptane is added to this solution, total vapour pressure increases by 10 mm of Hg . Find vapour pressure of pure n-heptane.

Ans. $\quad 600 \mathrm{~mm}$ of Hg
Sol. $\quad 550=\mathrm{P}_{\text {hep }}^{0} \times \frac{3}{4}+\mathrm{P}_{\text {hex }}^{0} \times \frac{1}{4}$
$560=\mathrm{P}_{\text {hep }}^{0} \times \frac{4}{4}+\mathrm{P}_{\text {hex }}^{0} \times \frac{1}{5}$
solving equation 1 and 2
$P_{\text {hep }}^{0}=600 \mathrm{~mm}$ of Hg .
12. Which of the following statement is correct for the structure of maltose?
(1) It contains one hemiacetal and one ketal group
(2) It contains two acetal group
(3) It contains one acetal and one hemiacetal group
(4) It contains one ketal and one hemiacetal group

Ans. (3)

Sol.

It contains one acetal and one hemiacetal group
13. When neopentyl alcohol is heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ two compounds $\mathrm{A}(85 \%)$ and $\mathrm{B}(15 \%)$ are formed compounds A and B respectively, are?
(1)

(2)

(3)

(4)

Ans. (3)

Sol.

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911
Website : www.matrixedu.in ; Email : smd@matrixacademy.co.in
14. A compound ' A ' $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}\right)$ react with $\mathrm{Br}_{2} \mid \mathrm{FeBr}_{3}$ and gives only one kind of product. When A reacts with sodalime it gives toulene find A ?
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

(A)

(A)
(Toulene)
15. Which of the following reacts with $\mathrm{CHCl}_{3}+\mathrm{KOH}$?
(1) Adenine and uracil
(2) Adenine and lysine
(3) Adenine and thymine(4)
4) Thymine and uracil

Ans. (2)

Adenine (A)

Thymine (T)

Sol.

Uracil (U)

Lysine

MATRIX

Adenine and lysine contain NH_{2} group therefore they will give reaction with $\mathrm{CHCl}_{3}+\mathrm{KOH}$
16.

Write the IUPAC name of the compound :
(1) 3-Bromo-5-methyl cyclopentane carboxylic acid
(2) 4-Bromo-2-methyl cyclopentane carboxylic acid
(3) 1-Bromo-3-methyl -4-cyclopentane carboxylic acid
(4) 3-Bromo-4-methyl cyclopentane carboxylic acid

Ans. (2)
Sol. According to IUPAC Nomenclature rules carboxylic acid will get priority.
17. A compound $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}(\mathrm{X})$ which undergoes acidic hydrolysis in presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives carboxylic acid (Y) and al cohol $(\mathrm{Z}) . \mathrm{Z}$ reacts with ZnCl_{2} and gives turbidity immediately. Then X is.
(1)

(2)

(3)

(4)

Ans. (4)

Sol.

18. Which of the following is not a method of purification of colloid?
(1) dialysis
(2) Peptization
(3) Electrodialysis
(4) Ultrafiltration

Ans. (2)
Sol. Peptization is a method to prepare colloid.
19. Which of the following statement is incorrect for the given electrochemical cell.

Given $\mathrm{E}_{\mathrm{Zn}^{+} \mid \mathrm{Zn}}^{\circ}=-0.76 \mathrm{eV}, \mathrm{E}_{\mathrm{Cu}^{+2} \mid \mathrm{Cu}}^{\circ}=-0.34 \mathrm{eV}$

(1) If EMF of external battery >1.1 volt then electron flow direction is from Cu to Zn
(2) If EMF of external battery is <1.1 volt then electron flow direction is from Zn to Cu
(3) If EMF of external battery is $=1.1$ volt then no electron flows
(4) If EMF of external battery is more than 1.1 volt then electron flow direction is from Zn to Cu

Ans. (4)
Sol. If EMF of external battery is more than 1.1 volt then current flows from Zn to Cu and electron flow direction is from Cu to Zn
20. At equilibrium for a reaction $\mathrm{A} \rightleftharpoons \mathrm{B}$.

Correct representation is $\left\{\mathrm{r}_{\mathrm{f}}=\right.$ Rate of forward reaction, $\mathrm{r}_{\mathrm{b}}=$ Rate of backward reaction $\}$
(1)

(2)

(3)

(4)

Ans. (2)
Sol. At equilibrium, rate of forward reaction = Rate of backward reaction.
21. In which region lines of Balmer series are present.
(1) Visible
(2) Infrared
(3) Ultra violet
(4) Radio wave

Ans. (1)
Sol. In hydrogen spectrum maximum lines of Balmer series lies in visible region.
22. For 1 mole of ideal gas which of the following statements must be true.
(a) U and H depends only on temperature
(b) Compressibility factor(Z) can not be 1 .
(c) $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
(d) $\Delta \mathrm{U}=\mathrm{C}_{\mathrm{V}} \mathrm{dT}$ for all processes
(1) a, c, d
(2) b, c, d
(3) c, d
(4) a, c

Ans. (1)
Sol. (a) For ideal gas U and H are function of Temprature $U=\frac{f}{2} n R T$ and $H=U+P V$
(c) $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
(d) $\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{V}} \mathrm{dT}$ for all processes $\mathrm{n}=1$
23. 20 mL of 0.2 gram $\mathrm{H}_{2} \mathrm{O}_{2}$ (impure) reacts completely with 0.316 gram KMnO_{4}. Find percentage purity of $\mathrm{H}_{2} \mathrm{O}_{2}$. [Given Molecular mass $\mathrm{H}_{2} \mathrm{O}_{2}=34 \& \mathrm{KMnO}_{4}=158$]

Ans. $\quad 85.00$
Sol. Let mass of pure $\mathrm{H}_{2} \mathrm{O}_{2}$ is x gram

+7	-1		
MnO_{4}^{-}		\quad	$\mathrm{H}_{2} \mathrm{O}_{2} \quad \rightarrow$
:---	$\mathrm{Mn}^{2+}+\quad$	0	
:---			
O_{2}			

n-factor
$5 \quad 2$
Eq. of $\mathrm{H}_{2} \mathrm{O}_{2}=$ Eq. of MnO_{4}^{-}
$\left[\frac{\mathrm{x}}{34}\right] 2=\left[\frac{0.316}{158}\right] 5$
$\mathrm{x}=0.17$
So, $\%$ purity of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution $=\frac{0.17}{0.2} \times 100=85 \%$
24. Aqueous AgNO_{3} is reacted with the following compounds. Find the order of reactivity of $\mathrm{S}_{\mathrm{N}} 1$.
(a)

(b)

(c)

(d)

(1) $a>b>c>d$
(2) $b>a>c>d$
(3) $b>a>d>c$
(4) $d>b>c>a$

Ans. (2)
sol. Reaction of Alkyl halide with AgNO_{3} follow $\mathrm{S}_{\mathrm{N}} 1$ reaction and rate of $\mathrm{S}_{\mathrm{N}} 1$ reaction depend on stability of carbocation.
(a)

(b)

Aromatic \& +M
(c)

(d)

Reactivity order : $b>a>c>d$
25. Find the number of chiral centres in the final product :

Ans. (4)

Sol.

