

JEE MAIN SEP 2020 (MEMORY BASED) | 4th Sep. SHIFT-1

Note: The answers are based on memory based questions which may be incomplete and incorrect.

1. The correct order of ionic radii of O^{2-} , F^- , Na^+ , Mg^{2+}

(1)
$$O^{2-} > F^{-} > Na^{+} > Mg^{2+}$$

(2)
$$O^{2-} > Mg^{2+} > F^{-} > Na^{+}$$

(3)
$$Na^+ > O^{2-} > F^- > Mg^{2+}$$

(4)
$$F^- > Na^+ > Mg^{2+} > O^{2-}$$

Ans. (1)

Sol.
$$\frac{Z}{e} = \frac{8}{10} \quad \frac{9}{10} \quad \frac{11}{10} \quad \frac{12}{10}$$

Size of isoelectronic species $\propto \frac{1}{Z/e}$

$$\frac{Z}{e} \uparrow \text{size} \downarrow$$

2. Which of the following complexes have same spin only magnetic moment

(1)
$$[Cr(H_2O)_6]^{2+}$$
 & $[Fe(H_2O)_6]^{2+}$

(2)
$$[Cr(H_2O)_6]^{3+}$$
 & $[Fe(H_2O)_6]^{3+}$

(3)
$$[Cr(H_2O)_6]^{2+} & [Co(Cl)_4]^{2-}$$

$$(4) [Co(H_2O)_6]^{2+} & [Fe(H_2O)_6]^{2+}$$

Ans. (1)

Sol.
$$\left[Cr(H_2O)_6 \right]^{2+}, Cr^{2+}(3d^4), t_{2g}^{-1.1,1} e_g^{-1,0}, n = 4$$

$$\left[Fe(H_2O)_6 \right]^{2+}, Fe^{2+}(3d^6), t_{2g}^{-2.1,1} e_g^{-1,1}, n = 4$$

$$\left[Cr(H_2O)_6 \right]^{3+}, Cr^{3+}(3d^3), t_{2g}^{-1.1,1} e_g^{-0,0}, n = 3$$

$$\left[\text{Fe}(\text{H}_2\text{O})_6 \right]^{3+}, \text{Fe}^{3+}(3\text{d}^5), t_{2\sigma}^{-1,1,1} e_{\sigma}^{-1,1}, n = 5$$

$$[COCl_4]^{2-}$$
, $CO^{2+}(3d^7)$, $e_g^{2,2}$, $t_{2g}^{1,1,1}$ n = 3

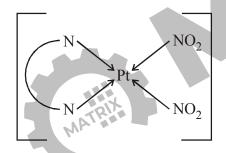
$$\left[CO(H_2\,O)_6\right]^{2^+},CO^{2^+}(3\,d^7),t_{2g}^{-2,2,1}e_g^{-1,1}n=3$$

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

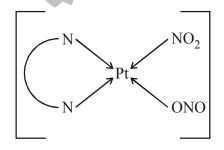
- **3.** The combustion of Li, Na, K in excess of air gives major oxides:
 - (1) Li₂O, Na₂O₂, KO₂ (2) Li₂O₂, Na₂O, KO₂ (3) Li₂O, NaO₂, KO₂ (4) LiO₂, Na₂O₂, K₂O₂

Ans. (1)

Sol. $\operatorname{Li}(s) + \frac{1}{2} \operatorname{O}_2(g) \xrightarrow{\Delta} \operatorname{Li}_2O$ (Normal oxide)

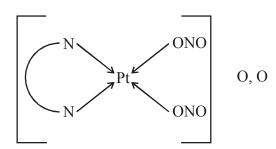

$$2\text{Na(s)} + \text{O}_2(g) \xrightarrow{\Delta} \text{Na}_2\text{O}_2$$
 (per oxide)

$$K(s) + O_2(g) \xrightarrow{\Delta} KO_2$$
 (super oxide)


- **4.** Total Number of possible isomers in $[Pt(en) (NO_2)_2]$
 - (1)3
- (2) 1
- (3)2
- (4)4

Ans. (1)

Sol. Donor atoms of NO₂ ligands


N, N

N, O

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

- 5. Lead nitrate on heating gives brown colour gas X, X on cooling gives Y, Y react with NO gives Z(blue solid/liquid). Find oxidation number of N in compound Z.
 - (1)+2
- (2) + 3
- (3) + 4
- (4) + 5

Ans. (2)

Sol.
$$Pb(NO_3)_2 \xrightarrow{\Delta} PbO(s) + 2NO_2 \uparrow + \frac{1}{2}O_2 \uparrow$$

Browngas

(X)

$$2NO_2 \xrightarrow{Cooling} N_2O_4$$

$$(Y)$$

$$2NO + N_2O_4 \longrightarrow 2N_2O$$

(Z)

- **6.** Select the correct statement(s)
 - (a) Mond process used for Ni
 - (b) Van arkel process used for Ti and Zr
 - $\hbox{(c) In extraction of silver, Ag present in anionic complex.}\\$
 - $\mbox{(d) In metallurgy of Iron, lime stone is converted to CaO.} \label{eq:cao}$
 - (1) (a), (b) and (c) only

(2) (a) and (c) only

(3) (b), (c) and (d) only

(4) (a), (b), (c) and (d)

Ans. (4)

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) \mid Ph. 01572-241911

$$\begin{array}{c}
\text{Ni} + 4\text{CO} & \xrightarrow{\Delta} \left[\text{Ni} \left(\text{CO} \right)_{4} \right] \\
\text{(a) impure} & 50^{\circ} \text{C} & \end{array}$$

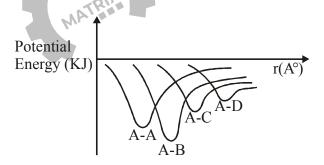
(b)
$$M + 2I_2 \longrightarrow MI_4 \longrightarrow M + 2I_2$$

 $(M = Ti/Zr)$ Pure

(c)
$$Ag + 2NaCN \longrightarrow Na[Ag(CN)_2]$$
 Soluble complex.

- Select the correct statement regarding element A (atomic no. = 101) and element B (atomic no. = 104). 7.
 - (1) Element A is actinoid and B is 4th group element
 - (2) Element A is actinoid and B is 6th group element
 - (3) Element B is actinoid and A is 4th group element
 - (4) Element B is actinoid and A is 6th group element

Ans.


(1)

$$A(Z=101) \Rightarrow Actinoid$$

 \Rightarrow Actinoid having atomic no. 89 to 103

$$B(Z = 104) \implies \text{group } 4^{\text{th}}.$$

- 8.
- Using following potential energy graph identify correct option.

- (1) D has highest electronegativity.
- (2) Bond length of A-B bond is greater than A-C bond.
- (3) A-D has minimum bond length.
- (4) A-B has most stiff(strong) bond.

MATRIX JEE ACADEMY

Office: Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Ans. (4)

Sol. Bond enthalpy of AB bond is highest so A-B bond is more strong and B is highest electronegative atom.

Order of bond length \Rightarrow A-A < A - B < A - C < A - D

9. How many grams of NH₃ are produced when 2.8 kg of N_2 reacts with 1 kg of H₂?

Ans. 3400 g

Sol.

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Number of mole initially $\frac{2800}{28} = 100$ $\frac{1000}{2} = 500$

0

Number of mole finally 0

200

200

mass of NH₃ Produced = $200 \times 17 = 3400$ gram

10. A 1st order reaction gets completed 75% in 90 mins, then time for 60% completion will be:

Ans. 60 mins

Sol. $90 = \frac{2.303}{k} \log \frac{100}{25}$ ---- (1)

 $t = \frac{2.303}{k} \log \frac{100}{40} \qquad ----(2)$

Divide equation 1 by 2

$$\frac{90}{t} = \frac{\log 4}{\log 2.5}$$

t = 60 mins.

11. An ideal solution containing 3 mole n-heptane and 1 mole n-hexane has total vapour pressure 550 mm of Hg. When 1 mole n-heptane is added to this solution, total vapour pressure increases by 10 mm of Hg. Find vapour pressure of pure n-heptane.

Ans. 600 mm of Hg

Sol.

$$550 = P_{hep}^{0} \times \frac{3}{4} + P_{hex}^{0} \times \frac{1}{4} - \dots (1)$$

$$560 = P_{hep}^{0} \times \frac{4}{4} + P_{hex}^{0} \times \frac{1}{5} - \dots (2)$$

solving equation 1 and 2

 $P_{hep}^{0} = 600 \text{ mm of Hg.}$

MATRIX JEE ACADEMY

- 12. Which of the following statement is correct for the structure of maltose?
 - (1) It contains one hemiacetal and one ketal group
 - (2) It contains two acetal group
 - (3) It contains one acetal and one hemiacetal group
 - (4) It contains one ketal and one hemiacetal group

Ans. (3)

Sol. H CH_2OH CH_2OH C

It contains one acetal and one hemiacetal group

- 13. When neopentyl alcohol is heated with conc. H_2SO_4 two compounds A (85%) and B(15%) are formed compounds A and B respectively, are?
 - (1) H₃C-CH=CH-CH₂, H₃C-CH-CH=CH₂

(3) H₃C-C=CH-CH₃+ H₂C=C-CH₂-CH₃
CH₃
CH₃

Ans. (3)

Sol.
$$CH_3$$
 CH_3 CH

MATRIX JEE ACADEMY

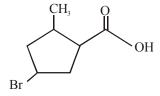
CHEMISTRY

14. A compound 'A'($C_8H_8O_2$) react with $Br_2|FeBr_3$ and gives only one kind of product. When A reacts with sodalime it gives toulene find A?

Ans. (2)

Sol.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 $COOH$ CO

- 15. Which of the following reacts with $CHCl_3 + KOH$?
 - (1) Adenine and uracil (2) Adenine and lysine (3) Adenine and thymine (4) Thymine and uracil


Ans. (2)

Sol.

MATRIX JEE ACADEMY

Adenine and lysine contain NH₂ group therefore they will give reaction with CHCl₃ + KOH

16.

Write the IUPAC name of the compound:

- (1) 3-Bromo-5-methyl cyclopentane carboxylic acid
- (2) 4-Bromo-2-methyl cyclopentane carboxylic acid
- (3) 1-Bromo-3-methyl -4-cyclopentane carboxylic acid
- (4) 3-Bromo-4-methyl cyclopentane carboxylic acid

Ans. (2)

- Sol. According to IUPAC Nomenclature rules carboxylic acid will get priority.
- 17. A compound $C_6H_{12}O_2(X)$ which undergoes acidic hydrolysis in presence of H_2SO_4 gives carboxylic acid (Y) and alcohol (Z). Z reacts with ZnCl, and gives turbidity immediately. Then X is.

$$(1) \bigcirc O \qquad (2) \bigcirc O \qquad (3) \bigcirc O \qquad (4) \bigcirc O \qquad (4) \bigcirc O \qquad (5)$$

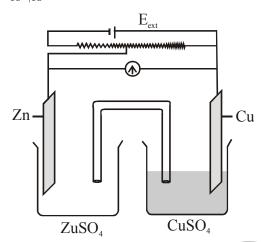
Ans.

(4)

Sol.

$$O \longrightarrow C \longrightarrow H_3O^+ \longrightarrow OH$$

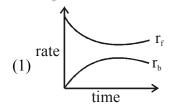
- **18.** Which of the following is not a method of purification of colloid?
 - (1) dialysis
- (2) Peptization
- (3) Electrodialysis
- (4) Ultrafiltration

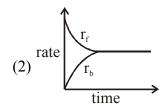

Ans. (2)

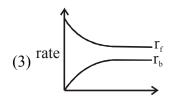
Sol. Peptization is a method to prepare colloid.

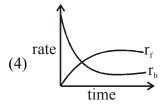
19. Which of the following statement is incorrect for the given electrochemical cell.

Given
$$E_{Z_n^+|Z_n}^{\circ} = -0.76 \text{eV}$$
, $E_{C_n^{+2}|C_n}^{\circ} = -0.34 \text{eV}$




- (1) If EMF of external battery > 1.1 volt then electron flow direction is from Cu to Zn
- (2) If EMF of external battery is < 1.1 volt then electron flow direction is from Zn to Cu
- (3) If EMF of external battery is = 1.1 volt then no electron flows
- (4) If EMF of external battery is more than 1.1 volt then electron flow direction is from Zn to Cu


Ans. (4)


- Sol. If EMF of external battery is more than 1.1 volt then current flows from Zn to Cu and electron flow direction is from Cu to Zn
- **20.** At equilibrium for a reaction $A \rightleftharpoons B$.

Correct representation is $\{r_f = Rate \text{ of forward reaction}, r_b = Rate \text{ of backward reaction}\}\$

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Ans. (2)

Sol. At equilibrium, rate of forward reaction = Rate of backward reaction.

21. In which region lines of Balmer series are present.

- (1) Visible
- (2) Infrared
- (3) Ultra violet
- (4) Radio wave

Ans. (1)

Sol. In hydrogen spectrum maximum lines of Balmer series lies in visible region.

22. For 1 mole of ideal gas which of the following statements must be true.

- (a) U and H depends only on temperature
- (b) Compressibility factor(Z) can not be 1.

(c) $C_P - C_V = R$

(d) $\Delta U = C_V dT$ for all processes

- (1) a, c, d
- (2) b, c, d
- (3)c, d
- (4) a, c

Ans. (1)

Sol. (a) For ideal gas U and H are function of Temprature $U = \frac{f}{2}nRT$ and H = U + PV

- (c) $C_P C_V = R$
- (d) $\Delta U = nC_V dT$ for all processes n = 1

23. 20 mL of 0.2 gram H_2O_2 (impure) reacts completely with 0.316 gram KMnO₄. Find percentage purity of H_2O_2 .[Given Molecular mass $H_2O_2 = 34$ & KMnO₄ = 158]

Ans. 85.00

Sol. Let mass of pure H_2O_2 is x gram

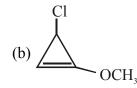
$$^{+7}$$
 $^{-1}$ $H_2O_2 \rightarrow Mn^{2+} +$

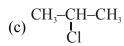
n-factor

Eq. of $H_2O_2 = Eq.$ of MnO_4

$$\left[\frac{x}{34}\right]2 = \left[\frac{0.316}{158}\right]5$$

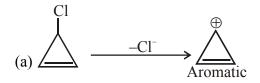
$$x = 0.17$$

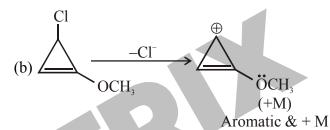

So, % purity of H_2O_2 solution = $\frac{0.17}{0.2} \times 100 = 85\%$


MATRIX JEE ACADEMY

CHEMISTRY

24. Aqueous AgNO₃ is reacted with the following compounds. Find the order of reactivity of $S_N 1$.


$$(d) \begin{array}{c} CH_3 - CH - CH_2 - NO_2 \\ I \\ Cl \end{array}$$


(2)
$$b > a > c > d$$

(3)
$$b > a > d > c$$

Ans. (2)

sol. Reaction of Alkyl halide with $AgNO_3$ follow S_N1 reaction and rate of S_N1 reaction depend on stability of carbocation .

(c)
$$CH_3$$
— CH — CH_3 $\xrightarrow{Cl^-}$ CH_3 — CH — CH_3 (d) CH_3 — CH — CH_2 — NO_2 $\xrightarrow{-Cl^-}$ CH_3 — CH — CH_2 — NO_2 (-I)

Reactivity order: b > a > c > d

25. Find the number of chiral centres in the final product:

$$\begin{array}{c|c}
\hline
CH-C=N & (i) C_2H_5MgBr \\
\hline
(ii) H_3O^+
\end{array}$$

$$\begin{array}{c}
\hline
(i) CH_3MgBr \\
\hline
(ii) H_3O^+
\end{array}$$
Final product

Ans. (4)