JEE Main September 2020 Question Paper With Text Solution 4 September | Shift-2

CHEMISTRY

JEE Main & Advanced | XI-XII Foundation | VI-X Pre-Foundation

JEE MAIN SEP 2020 | 4 SEP SHIFT-2

1. In the following reaction sequence, [C] is:

$$\begin{array}{c}
NH_{2} \\
\hline
(i)NaNO_{2}+HCl, 0-5^{\circ}C \\
\hline
(ii)Cu_{2}Cl_{2}+HCl
\end{array}$$
[A] Cl_{2}

$$hv$$
[B] $Na+dry \ ether$
(Major Product)

$$(2) \mid CH_2 \longrightarrow CH_2$$

$$C1 \quad CH_2$$

(3)
$$Cl$$
 CH_2 $-CH_2$ $-CH_2$

(4)
$$CI$$
 CH_2 CH_2 CH_2 C

Ans. (3)

2. The process that is NOT endothermic in nature is:

$$(1) \ H_{(g)} + e^- \rightarrow H_{(g)}^- \quad (2) \ Na_{(g)} \rightarrow Na_{(g)}^+ + e^- \ (3) \ O_{_{(g)}}^- + e^- \rightarrow O_{(g)}^{2-} \quad (4) \ Ar_{(g)}^- + e^- \rightarrow Ar_{(g)}^{-}$$

Ans. (1)

Sol.
$$H_{(g)} + e^{-} \xrightarrow{\text{exothermic}} H_{(g)}^{-}$$
 $\Delta H_{eg} = -7 \text{KJ/mol} \text{ (Exothermic)}$

$$O_{(g)}^{-} + e^{-} \xrightarrow{\text{endothermic}} O_{(g)}^{2-}$$
 $\Delta H_{eg} = +744 \text{KJ/mol} \text{ (Endothermic)}$

$$Ar_{(g)} + e^{-} \xrightarrow{\text{endothermic}} Ar_{(g)}^{-}$$
 $\Delta H_{eg} = +495.8 \text{KJ/mol} \text{(Endothermic)}$

$$Na_{(g)} \xrightarrow{\text{endothermic}} Na_{(g)}^+ + e^-$$
 IE = 495.8 KJ/mol (Endothermic)

MATRIX JEE ACADEMY

Office : Piprali Road, Sikar (Raj.) | Ph. 01572-241911

Website: www.matrixedu.in; Email: smd@matrixacademy.co.in

JEE Main September 2020 | 4 Sep Shift-2

3. The major product [C] of the following reaction sequence will be:

$$CH_2 = CH - CHO \xrightarrow{\text{(I) NaBH}_4} [A] \xrightarrow{\text{(ii) SOCl}_2} [A] \xrightarrow{\text{Anhy.}} [B] \xrightarrow{\text{DBr}} [C]$$

$$(1) \bigcirc \bigcap_{Br} D$$

$$(2) \bigcirc \bigcap_{D} \operatorname{Br}$$

$$(3) \bigcirc \qquad \qquad \stackrel{\text{Br}}{\longrightarrow} \qquad \qquad \qquad$$

CH₂-CH=CH₂

Ans. (4)

CH₂=CH-CH=O
$$\xrightarrow{\text{NaBH}_4}$$
 CH₂=CH-CH₂-OH \downarrow SOCl₂ CH₂=CH-CH₂-CI

Sol.

MATRIX JEE ACADEMY

JEE Main September 2020 | 4 Sep Shift-2

- 4. The mechanism of action of "Terfenadine" (Seldane) is:
 - (1) Inhibits the secretion of histamine
- (2) Inhibits hte action of histamine receptor
- (3) Helps in the secretion of histamine
- (4) Activates the histamine receptor

Ans. (2)

- Sol. Terfenadine act as antihistamines and interfere with the natural action of histamine by competing with histamine for binding sites of receptor.
- **5.** The major product [B] in the following reactions is:

$$(1) CH_2 = CH_2$$

(4) CH₃-CH₂-CH=CH-CH₃

Ans. (3)

Sol.

$$CH_{3} = CH_{2} - CH - CH_{2} - O - CH_{2} - CH_{3}$$

$$\downarrow HI(attack of H^{+} followed by S_{N}^{2})$$

$$CH_{3}$$

$$CH_{3} - CH_{2} - CH - CH_{2} - OH + CH_{3} - CH_{2} - 1$$

$$[A]$$

$$\downarrow H_{2}SO_{4}/\Delta (E_{1})$$

$$CH_{3} - CH_{2} - CH - CH_{2}^{+} \xrightarrow{rearrangment} CH_{3} - CH_{2} - C - CH_{3}$$

$$\downarrow \Delta$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{3} + CH_{3} - CH_{2} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{3} - CH_{3} - CH_{3} - CH_{3}$$

MATRIX JEE ACADEMY

Major product [B]

JEE Main September 2020 | 4 Sep Shift-2

- **6.** The processes of calcination and roasting in metallurgical industries, respectively, can lead to :
 - (1) Photochemical smog and global warming
 - (2) Global warming and acid rain
 - (3) Photochemical smog and ozone layer depletion
 - (4) Global warming and photochemical smog

Ans. (2)

- Sol. In Calcination and roasting CO₂ and SO₂ are released which are responsible for Global waring and acid rain.
- 7. Which of the following compounds will form the precipitate with aq.AgNO₃ solution most readily?

$$(1) \bigcirc O \bigcirc Br$$

$$(2) \bigcirc N$$

$$(3) \bigcirc O \bigcirc Br$$

$$(4) \bigcirc O \bigcirc H_3$$

Ans. (2)

Sol. Reaction of aq. $AgNO_3$ with given compounds is S_N1 type reaction, Rate of Which depends upon stability of carbocation.

MATRIX JEE ACADEMY

MATRIX

Question Paper With Text Solution (Chemistry)

JEE Main September 2020 | 4 Sep Shift-2

250 mL of a waste solution obtained from the workshop of a goldsmith contains 0.1 M AgNO₃ and 0.1M 8. AuCl. The solution was electrolyzex at 2 V by passing a current of 1 A for 15 minutes. The metal/metals electrodeposited will be:

$$\left(E^{0}_{Ag^{+}/Ag}=0.80V, E^{0}_{Au^{+}/Au}=1.69V\right)$$

(1) Only silver

- (2) silver and gold in proportion to their atomic weights
- (3) silver and gold in equal mass proportion
- (4) Only gold

(4) {answer given by NTA is (2)} Ans.

Total Charge supplied (in Faraday) = $\frac{\text{it}}{96500}$ F = $\frac{1 \times 15 \times 60}{96500}$ = $\frac{900}{96500}$ = $\frac{9}{965}$ F = 0.0093 F Sol.

No. of moles of $Au^+ = 0.1 \times 250/1000 = 0.025$ & similarly, No. of moles of $Ag^+ = 0.025$

Species with higher value of SRP will get deposited first at cathode.

(i) Au⁺(aq.)

0.025 0.0093 mole

so only Au will get deposited.

- A sample of red ink (a colloidal suspension) is prepared by mixing eosin dye, egg white, HCHO and water. The 9. component which ensures stability of the ink sample is:
 - (1) Egg white
- (2) Water
- (3) Eosin
- (4) HCHO

Ans. (1)

- Red ink is a colloidal sol, so it can be stabilised by material like natural gum or Egg white /albumen. Sol.
- 10. Five moles of an ideal gas at 1 bar and 298 K is expanded into vacuum to double the volume. The work done is:
 - (1) $-RT(V_2-V_1)$ (2) $-RT \ln V_2/V_1$ (3) $C_V(T_2-T_1)$
- (4) zero

(4) Ans.

Sol.
$$W = -P_{ext} \Delta V$$

In expansion against vacuum $P_{ext} = 0$

So work done is zero.

MATRIX JEE ACADEMY

11. The one that can exhibit highest paramagnetic behaviour among the following is:

gly=glycinato; bpy=2, 2'-bipyridine

- $(1) [Ti(NH_3)_6]^{3+}$
- (2) $[Fe(en)(bpy)(NH_3)_2]^{2+}$
- (3) $[Co(OX)_2(OH)_2]^-(\Delta_0 > P)$
- $(4) [Pd(gly)_2]$

Ans. (3)

Sol. Complex

EC

Unpaired electrons

- (1) $[Fe(en)(bpy)(NH_3)_2]^{2+}$
- $Fe^{2+} = 3d^6$

0

(2) [Pd(gly)₂]

 $Pd^{2+} = 4d^8$

0

 $(3) [Ti(NH_3)_6]^{3+}$

 $Ti^{3+} = 3d^1$

1

- (4) $[Co(OX)_2(OH)_2]^-(\Lambda_0 > P)$
- $\text{Co}^{5+} \implies 3\text{d}^4$

2

12. The reaction in which the hybridisation of the underlined atom is affected is:

 $(1) \ \underline{\mathrm{Xe}} \mathrm{F}_4 + \mathrm{Sb} \mathrm{F}_5 \rightarrow$

- $(2) \ \underline{NH}_3 \xrightarrow{H^+}$
- (3) $H_3 \underline{PO}_2 \xrightarrow{\text{Disproportionation}}$
- (4) $H_2SO_4 + NaC1 \xrightarrow{420K}$

Ans. (1)

Sol. (1) $H_2SO_4 + 2NaCl \rightarrow Na_2SO_4 + 2HCl$ sp^3

$$(3)^{\text{H}_{3}\text{PO}_{2}} \rightarrow \text{H}_{2}\text{PO}_{4} + \text{PH}_{3}$$

$$(4) \underset{sp^{3}d^{2}}{\text{XeF}_{4}} + \text{SbF}_{5} \rightarrow [\text{XeF}_{3}]^{+} [\text{SbF}_{6}]^{-}$$

JEE Main September 2020 | 4 Sep Shift-2

- The incorrect statement(s) among(a)-(c) is (are): 13.
 - (a) W(VI) is more stable than Cr(VI)
 - (b) In the presence of HCl, permanganate titrations provide satisfactory results.
 - (c) Some lanthanoid oxides can be used as phosphors.
 - (1) (b) and (c) only
- (2) (a) Only
- (3) (b) Only
- (4) (a) and (b) only

(3) Ans.

- (a) In transition metals on moving down the group higher oxidation states are more stable due to smaller size of Sol. atoms, which is due to lanthanide and actinide contractions.
 - (b) KMnO4 can oxidise chloride into chlorine, so it will give incorrect results
 - (c) its a fact
- The Crystal Field Stabilization Energy (CFSE) of [CoF_3(H_2O)_3] ($\Delta_0 < p$) is : 14.
 - $(1) 0.4 \Delta_0$
- $(2) -0.8 \Delta_0 + 2P$
- (3) $-0.8 \Delta_0$ (4) $-0.4 \Delta_0 + P$

(1) Ans.

 $[Co(H_2O)_3F_3]$ $Co^{3+} = 3d^64s^0 \Rightarrow t_{2g}^{2,1,1}, eg^{1,1}$ Sol.

CFSE = $[-0.4nt_{2g} + 0.6ne_g]_{\Delta 0} + n(P)$; where n is number of electrons

$$= [-0.4 \times 4 + 0.6 \times 2]_{\Delta_0} + 0$$

$$=-0.4_{\Delta_0}$$

JEE Main September 2020 | 4 Sep Shift-2

The shortest wavelength of H atom in the Lyman series is λ_1 . The longest wavelength in the Balmer series of **15.** He+ is:

$$(1) \frac{9\lambda_1}{5}$$

$$(2) \frac{27\lambda_1}{5}$$

$$(3) \frac{5\lambda_1}{9}$$

$$(4) \frac{36\lambda_1}{5}$$

Ans. (1)

Sol. For hydrogen atom:

For Lyman series

$$n_1 = 1$$

$$n_1 = 1$$
 & $n_2 = \infty$

$$\frac{1}{\lambda_{_{\rm H}}} = R_{\rm H} \bigg\lceil \frac{1}{1} - \frac{1}{\infty} \bigg\rceil \hspace{1cm} So, \hspace{1cm} \lambda = \frac{1}{R_{_{\rm H}}}$$

So,
$$\lambda = \frac{1}{R_H}$$

For He⁺ ion

Balmer series

$$n_1 = 2$$

$$n_2 = 3$$

$$\frac{1}{\lambda_{_{He^{^{+}}}}}=R_{H}\times Z^{2}\left[\frac{1}{4}\!-\!\frac{1}{9}\right]$$

$$\frac{1}{\lambda_{_{He^+}}} = R_H \times 4 \times \frac{5}{36}$$

$$\frac{1}{\lambda_{\mathrm{He^+}}} = \frac{5}{9} \, R_{\mathrm{H}} = \left(\frac{5}{9}\right) \frac{1}{\lambda}$$

$$\left(\lambda_{\mathrm{He}^{+}}\right) = \frac{9}{5}\lambda$$

16. An alkaline earth metal 'M' readily forms water soluble sulphate and water insoluble hydroxide. Its oxide MO is very stable to heat and does not have rock-salt structure. M is:

- (1)Mg
- (2) Be
- (3) Ca
- (4) Sr

Ans. (2)

BeSO₄ is Soluble in water Sol.

Be(OH)₂ is Insoluble in water

Structure of BeO is Hexagonal Wurtzite.

JEE Main September 2020 | 4 Sep Shift-2

- If the equilibrium constant for $A \rightleftharpoons B+C$ is $K_{eq}^{(1)}$ and that of $B+C \rightleftharpoons P$ is $K_{eq}^{(2)}$, the equilibrium constant for **17.** $A \rightleftharpoons P \text{ is}$:

 - $(1) \ K_{eq}^{(1)} \ K_{eq}^{(2)} \ \qquad (2) \ K_{eq}^{(1)} K_{eq}^{(2)} \qquad \qquad (3) \ K_{eq}^{(1)} + K_{eq}^{(2)} \qquad \qquad (4) \ K_{eq}^{(1)} / K_{eq}^{(2)}$

(1) Ans.

On adding Reaction 1st and Reaction 2nd we get. Sol.

$$A \rightleftharpoons P$$
 $K_{eq} = k_{eq} (1).K_{eq}(2)$

18. The major procuct [R] in the following sequence of reactions is:

(1)
$$\overset{\text{H}_2\text{C}}{\swarrow}$$
 C-CH₂-CH₃ CH(CH₃)₂

(2)
$$H_3C$$

 CH - CH = CH_2
 $(CH_3)_2CH$

(4)
$$\stackrel{\text{H}_3\text{C}}{\underset{\text{H}_3\text{CCH}_2}{\checkmark}}$$
 CH=C(CH₃)₂

JEE Main September 2020 | 4 Sep Shift-2

(4) Ans.

$$CH_3$$
- CH - $C1$
 CH_3 - CH - $C1$
 $CH(CH_3)_2$
 $CH(CH_3)_2$

ОН CH₃ CH-CH-CH₃ CH-CH-CH, CH E₁ of alcohol Sol. H_3C CH, Carbocation Rearrangement

JEE Main September 2020 | 4 Sep Shift-2

Among the following compounds, which one has the shortest C–Cl bond? 19.

Ans. **(4)**

Sol. Due to conjugation of lone pair of chlorine with π bond of C=C, partial double bond character decrease bond length that's why CH₂=CH-Cl have shortest C-Cl bond length.

20. The molecule in which hybrid MOs involve only d-orbital of the central atom is:

(1) BrF₅

 $(2)XeF_4$

(3) $[Ni(CN)_4]^{2-}$

 $(4) [CrF_6]^{3-}$

(3) Ans.

Sol. Complex Hybridisation

 $(1) [Ni(CN)_4]^{2-}$

 dsp^2

(2) XeF₄

 $sp^3 d^2$

 $(3) [CrF_6]^{3-}$

 $sp^3 d^2$

(4) BrF₅

 sp^3d^2

21. Consider the following equations:

 $2Fe^{2+} + H_2O_2 \rightarrow x A + yB$

(in basic medium)

 $2MnO_4^- + 6H^+ + H_2O_2 \rightarrow x'C + y'D + z'E$

(in acidic medium)

The sum of the stoichiometric coefficients

x, y, x', y' and z' for products A, B, C, D and E, respectively, is _____.

Ans. (19)

Sol.

(i)
$$2Fe^{2+} + H_2O_2 \rightarrow 2Fe^{3+} + 2OH^{-}$$

(ii)
$$2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$

So sum of
$$(x + y + x^1 + y^1 + z^1) = 2 + 2 + 2 + 5 + 8 = 19$$

MATRIX JEE ACADEMY

JEE Main September 2020 | 4 Sep Shift-2

The osmotic pressure of a solution of NaCl is 0.10 atm and that of a glucose solution is 0.20 atm. The osmotic pressure of a solution formed by mixing 1 L of the sodium chloride solution with 2 L of the glucose solution is $x \times 10^{-3}$ atm. x is _____. (nearest integer)

Ans. (167)

Sol.
$$\Pi = i CRT = i \left[\frac{n}{V} \right] RT$$

$$\Pi_{final} = \frac{(\pi_1 \ V_1) + (\pi_2 \ V_2)}{V_1 + V_2}$$

$$\Pi_{\text{final}} = \frac{(0.1 \times 1) + (0.2 \times 2)}{3}$$

$$= \frac{(0.1+0.4)}{3} = \frac{0.5}{3} = \frac{500}{3} \times 10^{-3} \text{ atm} = 166.67 \times 10^{-3} \text{ atm}$$

so,
$$x = 167$$

23. The number of chiral centres present in threonine is _____.

Ans. (2)

Threonine has two chiral carbon atoms.

JEE Main September 2020 | 4 Sep Shift-2

24. A 100 mL solution was made by adding 1.43 g of $Na_2CO_3.xH_2O$. The normality of the solution is 0.1N. The value of x is _____.

(The atomic mass of Na is 23 g/mol)

- Ans. (10)
- Sol. Number of gram Equivalent of solute = $0.1 \times 100/1000 = 0.01$

Mole of solute (Na₂CO₃.xH₂O) = $0.01 \times \frac{1}{2}$

Mass of Na₂CO₃.xH₂O = $0.01 \times \frac{1}{2} \times [106 + 18x] = 1.43$

$$\Rightarrow 106 + 18x = 286$$

$$18x = 180$$

$$x = 10$$

- The number of molecules with energy greater than the threshold energy for a reaction increases five fold by a rise of temperature from 27°C to 42°C. Its energy of activation in J/mol is _____. (Take In 5 = 1.6094; R= $8.314 \text{ J mol}^{-1}\text{K}^{-1}$)
- Ans. (84297.47)

Sol.
$$k = Ae^{-}\frac{Ea}{RT}$$

$$\ln\left(\frac{\mathbf{K}_2}{\mathbf{K}_1}\right) = \frac{\mathbf{E}\mathbf{a}}{\mathbf{R}} \left[\frac{1}{\mathbf{T}_1} - \frac{1}{\mathbf{T}_2}\right]$$

$$\ln(5) = \frac{\text{Ea}}{8.314} \left[\frac{1}{300} - \frac{1}{315} \right]$$

$$1.6094 = \frac{\text{Ea}}{8.314} \left[\frac{15}{300 \times 315} \right]$$

$$Ea = 84297.47J$$